menu

NASA Centennial Challenges Program

 43,517

NASA's Watts on the Moon Challenge

Support NASA's Phase 2 efforts to explore the solar system. This Challenge seeks solutions to transmit and store power in space.

This challenge is closed

stage:
Competition Level 2 begins
prize:
up to $5M

This challenge is closed

Overview

Challenge Overview

This is a US competition only. Please review the Team Agreement for complete eligibility requirements.

 

The Watts on the Moon challenge seeks to attract innovative engineering approaches to integrating power transmission and energy storage in order to enable missions operating in the extreme cold vacuum of the lunar surface. Successful demonstrations from this challenge will complement ongoing NASA investments in lunar surface power generation.

 

Background and context

Under the Artemis program, NASA plans to return to the Moon using innovative technologies to explore more of the lunar surface than ever before and applying what we learn to take the next giant leap—sending astronauts to Mars. 

This mission will require lunar surface power systems that can deliver continuous, reliable power to support various industrial activities as well as human habitation. However, new technologies and systems will be needed to address these needs. Specifically, NASA has identified two critical gaps for lunar surface power systems:

  1. Power Transmission that can deliver power from a remote generation source to critical mission operation loads where a) power loads are frequently or permanently immersed in extreme cold; and b) there are large variations in average power loads versus peak power loads. NASA has significant interest in both wired and wireless transmission, and the challenge seeks to incentivize and demonstrate both types of solutions.
  2. Energy Storage that can a) power mission operation loads when power generation is not available; and b) survive and operate in extreme cold environments.

Given that NASA will likely need to transport power systems to the lunar surface, maximizing system efficiency and minimizing system mass will be important to addressing both gaps. 

 

Challenge goals

The Watts on the Moon Challenge is a $5 million, two-phase competition focused on addressing critical gaps in lunar surface power systems, specifically related to power transmission and energy storage. 

NASA is seeking solutions that can be designed and built and then tested in simulated lunar conditions and are well-positioned to progress toward flight readiness and future operation on the lunar surface after the challenge. 

Such solutions may also have important synergies with terrestrial energy needs, and this challenge is expected to help advance similar technologies for terrestrial application and commercialization. 

Challenge is not focused on power generation

This challenge is not focused on power generation. Although power generation will be critical to activities on the lunar surface, NASA already has a variety of programs focused on developing and deploying power generation solutions. 

Teams should not propose any power generation as part of their solution. Such proposals will not be evaluated by the judging panel.

 

Competition structure

Phase 1 of the competition launched in September 2020 and lasted eight months. Seven winners were announced in May 2021 and were awarded a total of $500,000 in prize purses.

Phase 2 of the competition will last approximately 30 months and award up to $4.5 million. Phase 2 will take place in three segments, called Competition Levels. In each Competition Level, eligible Teams will submit the required materials and will be evaluated on their submission and scored by the judging panel. 

No Mission Scenario in Phase 2

Phase 1 of the challenge included a hypothetical mission scenario and mission activities that teams were asked to address. Phase 2 of the challenge includes no such mission scenario. Teams should address the Phase 2 Technical Requirements, as described below.

Guidelines

Challenge Guidelines

NASA's Watts on the Moon Challenge, Phase 2

Updated March 7, 2022. See details here.

Please view the Official Challenge Rules in a PDF document here.

 

Important Terms Used in this Challenge

  • Artemis Program:  A NASA program to land the first woman and first person of color on the Moon, using innovative technologies to explore more of the lunar surface than ever before.
  • Competition Levels: Segments of the challenge in Phase 2. At the end of each Competition Level, teams will be evaluated on specific technical milestones and the best performing teams will advance to the next Competition Level. There will be three Competition Levels in Phase 2.
  • HeroX: A company that provides a platform that allows anyone to launch a crowdsourcing project in an area they care about. NASA has contracted with HeroX to support the administration and promotion of this Challenge.
  • Judging Panel: A panel of professionals and subject matter experts from government, academia, and industry who will evaluate and score Phase 2 Submissions.
  • NASA Load Bank: A programmable electrical load provided by NASA for the challenge that will receive measured, continuous power delivered by team’s hardware.
  • NASA Power Source: A programmable power supply provided by NASA for the challenge that will supply measured electrical power during prescribed periods of time during testing of team’s hardware. This is the only source of energy or power teams are permitted to use.
  • Ombudsman: A liaison available to help resolve disputes. Additional information regarding the ombudsman can be found in the Team Agreement.
  • Team: One or more individuals or organizations that have registered to compete in the Challenge.
  • Team Agreement: A legal contract that all teams must sign in order to register for the Challenge.
  • Total Effective System Mass: The result of an adjustment to Total System Mass that accounts for the end-to-end efficiency of the team’s hardware. The adjustment is based on the approximate mass of additional power generation capacity that would be required to supply a less-than-100% efficient power transmission and energy storage system to meet the challenge power delivery requirements. Additional information about Total Effective System Mass and how it will be calculated can be found in Appendix F.
  • Total System Mass: The mass of all hardware required to deliver power according to the conditions shown in FIGURE 1 over a distance of 3 km. See Appendix F for additional information.

 

Technical Nomenclature Used in this Challenge

  • Atmospheric Pressure is expressed in Pascals (Pa).
  • Earth ambient conditions are the local atmospheric temperature and pressure where hardware testing may occur and which will not be adjusted to affect hardware capability or performance.
  • Electrical potential is expressed as volts (V). Unless otherwise specified, all systems are direct current (DC) or volts direct current (VDC).
  • Energy and energy storage capacity are expressed watt-hours (Wh)
  • Liquid Nitrogen is expressed as LN2.
  • Mass is expressed as kilograms (kg).
  • Power is expressed as watts (W).
  • Simulated lunar conditions are temperatures and vacuum that approximate conditions in permanently shadowed lunar polar craters. The conditions established for Competition Level 3 testing will not fully replicate the extreme cold and hard vacuum of the actual lunar environment.
  • Temperature on the lunar surface or under simulated lunar conditions is expressed in absolute temperature, kelvins (K).
  • Volume is expressed in cubic centimeters (cm3).

 

Phase 2 Technical Requirements

In Phase 2, NASA is seeking solutions that:

  1. Draw power from an intermittent NASA Power Source and deliver power continuously to a NASA Load Bank;
  2. Operate in simulated lunar temperatures and vacuum;
  3. Operate continuously without any additional power generation;
  4. Demonstrate a capability to deliver power over a distance of 3 km; and
  5. Optimize total system mass and total system efficiency.

Key performance requirements, environmental conditions, and assumptions are explained below.

 

Key performance requirements

NASA has designed a conceptual power load profile and environmental conditions intended to represent a portion of a lunar mission (see FIGURE 1). Teams are expected to design and build solutions that:

  1. Deliver power according to the profile shown in FIGURE 1; and
  2. Achieve a Total Effective System Mass below 150 kg.
FIGURE 1. Watts on the Moon Challenge Phase 2 Load Profile
(NASA has made available a downloadable Excel file with data from FIGURE 1, accessible here.)

Figure 1. Watts on the Moon Challenge Phase 2 Power Timeline. Teams must draw all energy used for power delivery and thermal management from the NASA Power Source during the two indicated Power Source Active for Transmission periods and provide the indicated power levels to a NASA Load Bank continuously throughout the test (from Time = 0 to Time = 48 hours). Power must be delivered to the load bank between 24-32 VDC. The indicated active power levels shown are equal to the average power transmission level for a 100% efficient solution. Total (stored) energy delivered to the NASA Load Bank during Power Load from Storage Only periods is ~5,500 Watt-hours. Maximum allowable power draw from the NASA Power Source is 6,000 Watts. Solutions are nominally surrounded by a liquid nitrogen cold wall (~77 K), an insulated floor, and a 10-3 Torr (or lower) vacuum. 

 

Explanation of relevant environmental conditions

This challenge does not seek to address all possible environmental conditions on the lunar surface, but rather, the key environmental conditions that represent critical technology gaps. 

The relevant environmental conditions for this challenge are:

  • Temperature: Phase 2 of the challenge is focused on solutions that will survive and operate at temperatures as low as 77 K.
    • Note: we expect that, during Competition Level 3 testing, any energy storage and the termination component of any power transmission will be placed in close proximity of a radiative cold wall chilled with liquid nitrogen inside a thermal vacuum chamber.
  • Atmospheric Pressure: Phase 2 of the challenge is focused on solutions that will operate at atmospheric pressure of 0.1 Pa (~103 torr or ~ 10-5 atmospheres) or lower.

Other environmental conditions on the lunar surface, such as dust and radiation, are not part of this challenge, and Teams are not required to address them. 

 

Key assumptions

Teams should make the following assumptions in developing their solutions. Note, Teams are not responsible for the design or implementation of any features of any of the NASA Power Source or NASA Load Bank described below. In addition, Teams should not propose modification of the NASA Power Source or the NASA Load Bank as part of their solution. 

  • Transport to the lunar surface: This challenge is not focused on transporting solutions to the lunar surface. Teams should not address transport to the lunar surface in their submissions.
  • Deployment on the lunar surface: Although Teams will not be required to demonstrate how their solution would be deployed on the lunar surface after landing, Teams will be required to describe methods and solutions to the challenges of post-landing surface deployment or set up of their power transmission designs under lunar-surface environmental conditions.
  • NASA Power Source: This challenge is not focused on power generation. Teams should not propose any power generation as part of their solution. Such proposals will not be evaluated by the judging panel. Teams must deliver power from a NASA Power Source with the following characteristics:
    • Operates in a fixed location
    • Provides up to 6 kW of electrical power at 120VDC
    • Provides power only during time periods shown in FIGURE 1
    • Complies with the SAE International Space Power Standard AS5698 power quality specification
  • NASA Load Bank: Teams must deliver power to a NASA load bank with the following characteristics:
    • Operates in a fixed location
    • Operates continuously and follows the load profile and timeline shown in FIGURE 1
    • Operates in constant power mode
    • Power must be delivered to the load bank between 24-32 VDC
    • Steps between load changes will be limited to slew rates less than 100 Watts per second (W/s)
  • Long Distance Power Transmission Demonstration: Teams should assume that the NASA Power Source and NASA Load Bank are 3 km apart. All solutions must demonstrate power delivery over this distance through a combination of testing and analysis.

 

Phase 2 Competition Levels and Requirements

Phase 2 includes a registration period and three levels of competition. Each is explained in more detail below. Teams should note that, if they are chosen to participate in Competition Level 2, they must provide proof of insurance as outlined in the Team Agreement.

 

Competition Calendar

TABLE 1 provides an overview of the expected timeline for Phase 2.

TABLE 1.

Competition Calendar

Competition Level

Event

 

Duration and Timing

 

Date

Competition Level 1 

(~6 months)

Phase 2 opens

Competition Level 1 begins

 

--

February 23, 2022 

 

Registration deadline

Competition Level 1 submissions due

 

~4 months after

Phase 2 opens

 

June 15, 2022

Competition Level 1 judging and winner selection

 

~2 months after submission deadline

 

June – August 2022

Competition Level 1 winners announced 

End of Competition Level 1

 

--

August 2022

Competition Level 2

(~11 months)

Competition Level 2 begins

 

--

August 2022

Competition Level 2 submissions due

 

~6 months after Competition Level 2 begins 

 

February 8, 2023

Site visits by observer groups 

(in-person or virtual)

 

~3 months after submission deadline

 

February 2023 – May 2023

Competition Level 2 judging and winner selection

 

~2 months after site visits

 

May – July 2023

Competition Level 2 winners announced

End of Competition Level 2

 

--

July 2023

Competition Level 3

(~13 months)

Competition Level 3 begins

 

--

July 2023

Competition Level 3 safety reviews

Teams may continue working on submissions during this period

 

 Up to 2 months prior to submission deadline

 

February – March 2024 

 

Competition Level 3 submissions due

 

~9 months after Competition Level 3 begins (includes up to 2 months for safety reviews)

 

April 3, 2024

Testing at NASA

 

~3 months after submission deadline

 

April – July 2024

 

Competition Level 3 judging and winner selection

 

~1 month after testing

August 2024

Competition Level 3 winners announced

End of Competition Level 3 and Phase 2

 

--

August or September 2024

 

Registration

Any eligible individual or organization that meets the eligibility criteria provided in Appendix A may participate in Phase 2. Teams are not required to have participated in Phase 1. 

To register, Teams must either upload the executed Team Agreement or provide the details required for HeroX to prepare and send the agreement, via RightSignature, for execution. To participate in Phase 2, Teams must execute the Team Agreement and other required documents by June 22, 2022 (7 days after the Competition Level 1 submission deadline). 

Teams selected for an award will be required to provide proof of citizenship/permanent residency, proof of primary place of business, proof of incorporation, and/or proof of student visa. Proof must be provided within 3 business days to be eligible for an award. Any Team or team member who submitted the required proof documents in Phase 1 and was deemed eligible to compete will not be required to submit this documentation again in Phase 2. Teams must indicate which documents from Phase 1 should apply to Phase 2 entry and provide confirmation that all documents are still valid.

The registration process will be administered by HeroX. Registration will take place through the official Challenge website: https://www.herox.com/WattsOnTheMoon. Additional details regarding the process for registration are available here.

 

Competition Level 1

In Competition Level 1, Teams will develop detailed engineering design and analyses of their solution, similar to what is required in an engineering preliminary design review. The Competition Level 1 Template outlines the specific elements that Teams must address and describes how each element will be scored. The Competition Level 1 Template is provided in Appendix B.

Teams will complete and submit the Competition Level 1 Template by the Competition Level 1 submission deadline, June 15, 2022, at 5:00 PM Eastern Daylight Time. 

Following the submission deadline, the judging panel will review, evaluate, and score submissions. Up to seven (7) winning Teams will be awarded prizes and move onto Competition Level 2. Only winning Teams from Competition Level 1 will be permitted to participate in Competition Level 2. In addition, NASA personnel will review each winning Team’s plan for Level 2 testing and analysis and indicate whether the plan is “sufficient” or “insufficient” with regard to each of the Competition Level 2 Performance Metrics (see Appendix C). Teams will receive an evaluation form indicating which areas are “sufficient” or “insufficient”; however NASA will not provide any specific notes or suggestions to Teams regarding their plans; Teams will be solely responsible for updating their plans (if necessary) and executing their plans in Competition Level 2, as described below.

Competition Level 2

In Competition Level 2, Teams will develop and demonstrate (through testing and analysis) key components of their solution, similar to what is required in an engineering critical design review. The purpose of Competition Level 2 testing and analysis is to demonstrate two aspects of their solution: 

  1. Feasibility of the design and progress toward environmental and performance testing in Competition Level 3;
  2. Critical aspects of the design that, for practical reasons, cannot be tested in Competition Level 3.

The Competition Level 2 Template outlines the specific elements that Teams must address and describes how each element will be scored. The Competition Level 2 Template is provided in Appendix D.

In addition, prior to the Competition Level 2 submission deadline, Teams will be asked to confirm the location/facility that will be used for Competition Level 2 testing. 

Teams will complete and submit the following three items by the Competition Level 2 submission deadline, February 8, 2023 at 5:00 PM Eastern Standard Time: 

  • A completed Competition Level 2 Template
  • An updated Testing Plan for Competition Level 2
  • A video demonstration file (if needed), as described in the Competition Level 2 Template

Following the Competition Level 2 submission deadline, NASA will send an observer group to conduct a site visit. Site visits will take place in person, unless COVID-19 or other conditions necessitate that site visits be conducted virtually. The observer group may include one or more NASA personnel and a member of the judging panel. During the site visit, Teams must conduct relevant activities outlined in their Testing Plan for Competition Level 2. During the site visit, the observer group will validate the performance results and ask any additional questions necessary to understand and assess the Team’s performance. The observer group will record and submit their findings to the judging panel for consideration in judging. 

Each site visit is expected to be completed within one day; all site visits will be completed within two months. Site visits may be conducted concurrently by different observer groups. Teams may request a specific date for their site visit; however, a Team’s preferred date is not guaranteed. Teams will be provided with reasonable notice to confirm the date of the site visit. Additional details regarding site visits will be provided to Teams after Competition Level 2 commences.

Following completion of all site visits, the judging panel will review, evaluate, and score submissions. Up to four (4) winning Teams will be awarded prizes and move onto Competition Level 3. Only winning Teams from Competition Level 2 will be permitted to participate in Competition Level 3. 

 

Competition Level 3

In Competition Level 3, Teams will refine their hardware and submit a full system prototype for testing in simulated lunar conditions at NASA facilities. 

Up to two months before the Competition Level 3 submission deadline, Teams must complete a safety review to demonstrate that the Team’s hardware will operate safely during Competition Level 3 testing. For this review, Teams must submit an updated version of the safety analysis they submitted in Competition Levels 1 and 2. This safety analysis must identify potential safety hazards and discuss how those hazards have been mitigated. Teams will make a virtual presentation of the safety analysis to a NASA safety committee. The committee must approve the safety of each Team’s solution before it can be delivered to any NASA facility. If NASA cannot approve a Team’s solution because the solution cannot be deemed sufficiently safe, the Team may be ineligible to test in a NASA facility and ineligible to win a prize.   

Following NASA’s approval of the safety analysis, Teams will submit the following items:

  • All hardware required for Competition Level 3 testing
  • An updated Master Equipment List, including both the hardware submitted for testing and the hardware required to deliver power over a distance of 3 km
  • Calculation of Total System Mass, including supporting analysis that shows the difference between the mass of the hardware submitted for testing and the mass of the hardware required to deliver power over a distance of 3 km

Teams will provide these items by shipping or delivery to a NASA facility; the exact shipping address will be provided to Teams prior to the shipping deadline. The shipping deadline will be April 3, 2024.

The testing period for each Team is expected to last up to two weeks and will include integration of the Team’s solution into the testing facilities and testing. Teams may participate in the hardware integration into the test facility under the observation and supervision of NASA. Teams are expected to have at least one team member, approved by NASA, present during the testing period. Teams may request specific dates for their testing period; however, a Team’s preferred dates are not guaranteed. 

Prior to Competition Level 3 installation and testing, NASA will measure the mass of hardware submitted. Potential adjustments to this mass measurement are discussed in Appendix F

After a Team’s solution has been integrated into the testing facilities but before testing commences, NASA will conduct a test readiness review. If test readiness is deemed insufficient, the Team will have up to two days to remedy any issue under NASA observation and supervision. If sufficient remedies cannot be made, the Team may not proceed with testing and will not be eligible to win. If any remedy impacts the mass of a Team’s hardware, NASA will make any necessary adjustments to the mass measurement.

Following the test readiness review, NASA will conduct testing for each solution to determine its ability to deliver power to loads described in FIGURE 1 under simulated lunar conditions. Specifically, NASA intends to use a thermal vacuum chamber that will simulate the temperatures and atmospheric pressure described in FIGURE 1. Preliminary details regarding expected testing operations can be found in Appendix G. Any updated details and resources regarding testing operations will be provided at the challenge website. 

During Competition Level 3 testing, NASA will determine the total system efficiency of each solution by the ratio of the energy delivered to the NASA Load Bank to the energy drawn from the NASA power source.

Teams will be scored based on Total Effective System Mass, which is equal to the Total System Mass plus Excess Power Mass Penalty, as described in the Competition Level 3 Scoring System. Additional details regarding scoring can be found in Appendix F.

Following testing, the judging panel will review, evaluate, and score the test results. Up to two (2) winners will be awarded prizes. Each team that participates in Competition Level 3 testing will also receive a facility testing report with their testing data and performance results.

 

Phase 2 Prize Purse

For eligibility to win a prize, see the Watts on the Moon Phase 2 Team Agreement.

NASA expects an available total prize purse for Phase 2 of up to $4.5 million. NASA will award prizes to the winners of each Competition Level, as described in TABLE 2 below.

TABLE 2. Phase 2 Prize Purse Distribution

Competition Level

Number of Winners

 

Prize Purse per Winner

Total Prize Purses Awarded

Competition Level 1

 

Up to 7

$200,000

$1.40 million

Competition Level 2

 

Up to 4

$400,000

$1.60 million

Competition Level 3

Up to 2

 

1st place: $1,000,000

2nd place: $500,000

 

$1.50 million

Total

 

$4.5 million

 

Appendices

Appendix A: Eligibility.

Appendix B: Competition Level 1 Submission Template.

Appendix C: NASA Review of Competition Level 2 Testing and Analysis Plans.

Appendix D: Competition Level 2 Submission Template.

Appendix E: Judging Rubric in Competition Levels 1 and 2.

Appendix F: Competition Level 3 Scoring.

Appendix G: Preliminary Testing Operations in Competition Level 3.

Timeline
Updates17

Challenge Updates

Announcing the Level 1 Winners of Watts on the Moon Phase 2

Aug. 16, 2022, 12:55 p.m. PDT by Jamie Elliott

NASA has selected the following Level 1 winners to share in the $1.4 million prize pool for Watts on the Moon Phase 2. You can read the official NASA Winners Announcement at this link.

The winners are:

  • HELPS – High Efficiency Long-Range Power Solution, submitted by US Santa Barbara Experimental Cosmology
  • TEMPEST, submitted by Michigan Technological University Planetary Surface Technology Development Lab (MTU-PSTDL) 
  • Power the Moon with GaN Multilevel Converters, submitted by Team Electric Moon (E.M)
  • Moonrush Veterans, submitted by Team Skycorp
  • No Replacement For DC-placement, submitted by Team Orbital Mining Corporation
  • Virtus Solis Microwave WPT & Thermal Energy System, submitted by Virtus Solis Technologies, Inc.
  • Flywheel energy storage using In-Situ Mass Ballast, submitted by X-Wheel Inc.

We would also like to recognize the other teams who participated in Level 1. Great work was submitted by a variety of teams and competitors. While they will not be advancing to the next stage, we would like to commend them for their excellent submissions.

We are so excited to announce these Level 1 winners. It was not a simple decision. The winners will each receive $200,000 and will move on to compete in Level 2.

 

Congratulations once again to our winners!


Watts on the Moon Phase 2 Video

June 15, 2022, 7:37 a.m. PDT by Jamie Elliott

Hello solvers - we wish you all the best in the coming hours as you prepare to submit.

As a reminder of why this challenge is so important to NASA and the world, please watch the brief video linked below.

Watts on the Moon Challenge Phase 2


8 Hours Remaining to Submit!

June 15, 2022, 6 a.m. PDT by Lulu

If you're still assembling your submission, you have exactly 8 hours left to complete it! 

Here's a Tip: HeroX recommends innovators plan to submit with at least a 3-hour window of time before the true deadline. Last-minute technical problems and unforeseen roadblocks have been the cause of many headaches. Don't let that be you!


Two Day Warning

June 13, 2022, 2 p.m. PDT by Lulu

This is your official two-day reminder!

That's right, the NASA's Watts on the Moon Challenge will be closing this coming June 15th at 5 pm Eastern Time (New York/USA).

Please be sure to complete your submission form well before the exact cut-off time. 

At exactly 5 pm ET, we can no longer accept new submissions! 

Got questions?

Now is the time to speak up! Comment directly on this update with any questions about the submission process and we'll get back to you right away!


Five Days Left to Submit (TIPS)

June 10, 2022, 2 p.m. PDT by Lulu

We are quickly approaching the final days open for submission to the NASA's Watts on the Moon Challenge. The deadline is June 15th at 5 pm Eastern Time (New York/USA.) 

Here are a couple of last-minute tips for a smooth entry process:

1. Begin your submission process several days before the cutoff time. This allows you to ensure everything you have been working on can be seamlessly integrated into the form.

2. Your submission will not be reviewed until you click the orange "Submit Entry" button at the top of the final review page. Please remember to do this! 

3. Review the Challenge Guidelines to ensure your submission is complete. Pay particular attention to the judging criteria which will be the scorecard used to evaluate your entry.

4. Have any questions? Head over to the challenge forum and we would love to help you out. 

Thanks so much, and good luck to all! 


Forum24
Teams4K
Press
Resources
FAQ

Frequently Asked Questions

Yes, but it’s quick and easy. Just click the “Solve this Challenge” button on this page and follow the instructions to complete your registration. All you need to provide is your name and email address.

If you have a question not answered in the FAQ, we recommend that you post it in the Forum where someone will respond to you. This way, others who may have the same question will be able to see it.

The Watts on the Moon Challenge is a $5 million, approximately 36-month competition to
incentivize new solutions for integrating power transmission and energy storage in order to
enable missions operating in the extreme cold vacuum of the lunar surface. Phase 1 of this
challenge lasted approximately 8 months and offered $500,000 in prize purses.
Phase 2 of this challenge will last approximately 30 months and offer up to $4,500,000 in
prize purses.
 

See HeroX website for a complete listing: https://herox.com/WattsOnTheMoon

 

Phase 2 Opens for Registration

2/23/22

Phase 2 Competition Level 1 Award Ceremony

8/2022

Phase 2 Competition Level 2 Award Ceremony

7/2023

Phase 2 Competition Level 3 Award Ceremony and Completion

9/2024

For Phase 2, the prize purse will be up to $4.5 million. Additional details about the number 
of winners and division of prize purses in Phase 2 (including milestone prizes) are included in
the Phase 2 challenge rules.
 

This challenge is not focused on power generation. Teams should not propose any power 
generation as part of their solution. Such proposals will not be evaluated by the judging panel.

No, mission scenarios will not be used for Phase 2.

NASA is seeking solutions that can be designed and built and then tested in simulated lunar 
conditions and are well-positioned to progress toward flight readiness and future operation on 
the lunar surface after the challenge.

Power Transmission that can deliver power from a remote generation source to critical 
mission operation loads where a) power loads are frequently or permanently immersed in 
extreme cold; and b) there are large variations in average power loads versus peak power 
loads. NASA has significant interest in both wired and wireless transmission, and the 
challenge seeks to incentivize and demonstrate both types of solutions.


Energy Storage that can a) power mission operation loads when power generation is not 
available; and b) survive and operate in extreme cold environments.
 

Given that NASA will likely need to transport power systems to the lunar surface, 
maximizing system efficiency and minimizing system mass will be important to addressing 
both gaps.

Teams chosen to participate in Competition Level 3 will test their solutions at a facility 
chosen by NASA.

Please visit https://www.herox.com/WattsOnTheMoon for all challenge information, 
including Challenge Rules, Team Agreement, and the Challenge Timeline.

The Lead NASA Center is the Glenn Research Center with Marshall Space Flight Center 
being responsible for operating the Challenge.

NASA Centennial Challenges, as part of the Prizes, Challenges and Crowdsourcing Program, 
is providing the $5,000,000 prize purse, and has partnered with Glenn Research Center, the 
Lead Center, to develop and conduct this challenge. HeroX is the challenge administrator.

HeroX is a for-profit spin off of the XPRIZE Foundation. It is a platform that allows anyone 
to launch a Crowdsourcing Project in an area they care about. NASA has contracted with 
HeroX to help with the promotion and administration of the challenge.

All questions related to participating and/or competing in the challenge should be sent to 
info@herox.com.


Questions sent to any other email address or individual will not be addressed.
Media inquiries should be directed to:
 

Molly Porter
NASA Centennial Challenge
molly.a.porter@nasa.gov
+ 1 256-544-2772
 

Jamie Elliott
HeroX
jamie@herox.com
+ 1(301) 468-6071

For Phase 2, Competition Level 1, there will not be an insurance requirement for the 
competitors. For Phase 2, Competition Level 2, all individuals and entities are required to 
have adequate insurance coverage as described in the Team Agreement. For Phase 2, 
Competition Level 3, NASA will decide if insurance is required and what amount based on 
the proposed solution.

NASA’s goals for this challenge are twofold: 1) to advance the technology for energy 
transmission and storage for long term missions and 2) to engage with a broader community 
of energy and multidisciplinary experts for the advancement of space exploration.

As NASA works to extend human exploration of the solar system, unprecedented capacity for
power transmission and energy storage will be needed to support sustained human presence 
and the beginning of industrial activity. These areas represent key technology needs for 
NASA where new ideas and approaches can augment investments NASA is making in power 
generation.

First, visit https://www.herox.com/WattsOnTheMoon and download the required 
documentation to submit your information. Eligible competitors can participate in Phase 2, 
without having participated in Phase 1.

First, visit https://www.herox.com/WattsOnTheMoon and there you will find all the 
Eligibility documentation and can submit your information. Below is some information on 
Eligibility:


a. Individuals must be U.S. citizens or permanent residents of the United States and must be
18 years of age or older.


b. Organizations must be an entity incorporated in and maintaining a primary place of 
business in the United States. 


c. Teams must be comprised of otherwise eligible individuals or organizations and led by an
otherwise eligible individual or organization.

In Phase 2, NASA is seeking solutions that:

 

  • Draw power from an intermittent NASA Power Source and deliver power 
    continuously to a NASA Load Bank
  • Operate in simulated lunar temperatures and vacuum
  • Operate continuously without any additional power generation
  • Demonstrate a capability to deliver power over a distance of 3 km; and 
  • Optimize total system mass and total system efficiency.

In Phase 2, Teams should design solutions to deliver power from a NASA Power Source with
the following characteristics:

 

  • Operates in a fixed location 
  • Provides up to 6 kW of electrical power at 120VDC
  • Provides power only during time periods specified
  • Complies with the SAE International Space Power Standard AS5698 power quality 
    specification

In Phase 2, Teams should design solutions to deliver power to a NASA Load Bank with the 
following characteristics:

 

  • Operates in a fixed location 
  • Operates continuously and follows the load profile and timeline shown in the 
    challenge rules 
  • Operates in constant power mode
  • Power must be delivered to the load bank between 24-32 VDC
  • Steps between load changes will be limited to slew rates less than 100 Watts per 
    second (W/s)

No, this challenge is not focused on transporting solutions to the lunar surface. Teams should 
not address transport to the lunar surface in their submissions.

Teams will not be required to demonstrate how their solution would be deployed on the lunar 
surface after landing. However, Teams will be required to describe methods and solutions to 
the challenges of post-landing surface deployment or set up of their power transmission 
designs under lunar-surface environmental conditions.

The entire hardware package will be supported on an insulated floor and otherwise surrounded by a liquid nitrogen cold wall in vacuum.

The power supply characteristics described in the rules indicate an operating voltage and up to 6000w is available.  Similarly, the power profile in the rules indicates the power level that must be delivered by the team's package staying within a voltage range.

Material properties are not specified by the competition rules, but are the responsibility of competing teams to determine in the development of their concept.

As described in the rules, the maximum power available during the periods when the power supply is active is 6000watts. The illustration indicates the average power draw level that would be used by a 100% efficient system.

The clear objective of the rules is for teams to develop and implement hardware solutions to this challenge.  We anticipate that some teams may choose to develop performance models as part of their early design and development work.

Registration
Phase 1
Meet the Winners