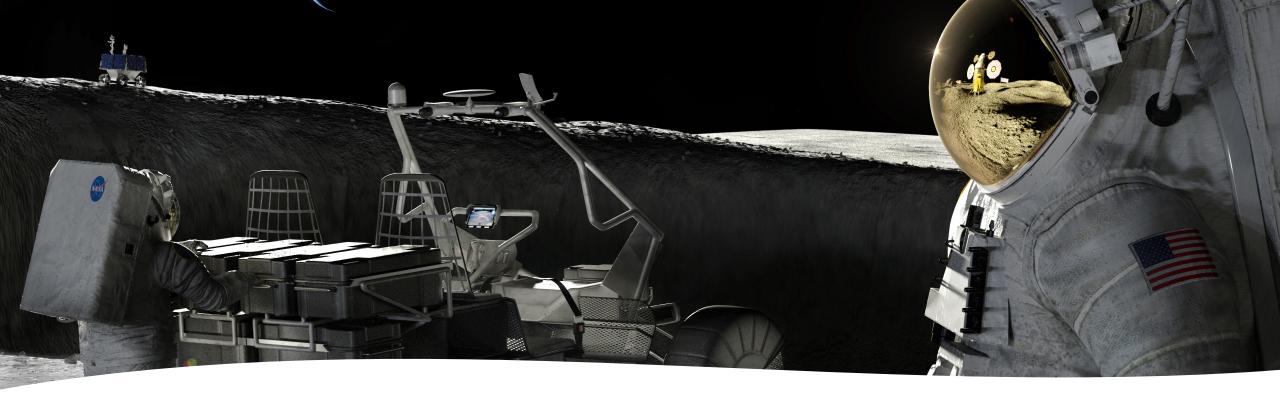


NASA's Artemis Program

- 2024: Land first woman and next man on the moon
- Prior to 2030: Create a sustainable base camp

Basecamp serves as a hub for scientific research and a base for Mars exploration

 Cargo needs to be offloaded from a lander


Artemis Delivery Needs

 Robust and reliable cargohandling in lunar environment

 Compatible with a broad array of lunar lander configurations

Context

- NASA has developed some concepts and prototypes
- These methods are effective at some operations
- Concepts may not optimize cost, mass, and simplicity

The Ask

 NASA is seeking ideas from the public to inform the direction of future development

Who can participate

Anyone age 18 or over from any background

Payloads to be Offloaded

Habitable Mobility
Platform

Fission Surface
Power System

Food Production
Plant

Refrigeration

System

2-8 mt

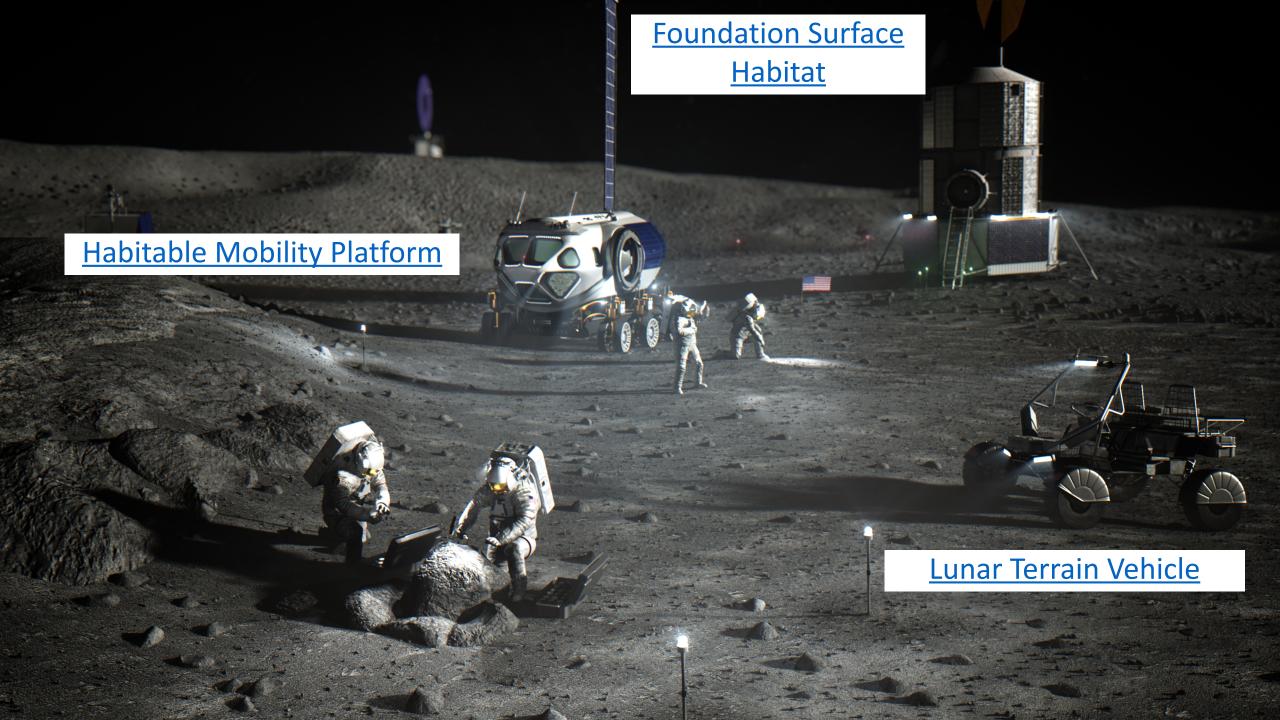
Power Cables

Batteries Solar Panels

Antennas

Cameras Lab Equipment

<2 mt


Medical Facility Laboratory Module Heat Exchanger Pressurized Rover Mobile Habitat Foundational Habitat

Example payloads

- Lunar terrain vehicle or <u>LTV</u>, transports crew
- Habitable mobility platform crew trips lasting up to 45 days
- Lunar foundation surface habitat houses four crew members

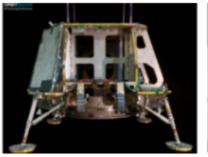
NASA Outlines Lunar Surface Sustainability Concepts

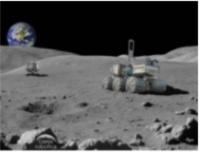
8-12 mt

Consider the three height ranges of lunar landers

- 0-4 meters (0-12 ft.)
- 4-10 meters (12-30 ft.)
- 10 meter (30 ft.) or greater

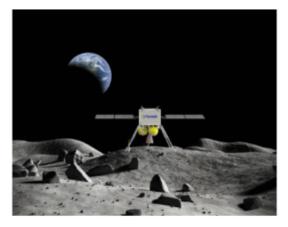
Competitors should decide if solution will be limited to single height range or versatile

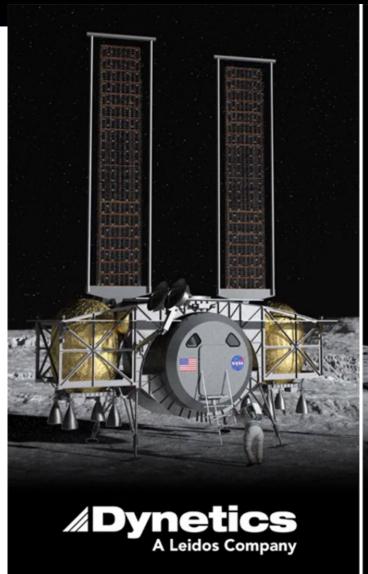

Commercial Lunar Payload Services



Fourteen qualified providers to deliver science and technology to the lunar surface


 https://www.nasa.gov/content/ commercial-lunar-payload-services





Human Landing System competitors

https://www.nasa.gov/feature/nasa-selects-blue-origin-dynetics-spacex-for-artemis-human-landers

Gateway Logistics Services (GLS)

SPACE

- SpaceX selected as the first U.S. commercial provider under the Gateway Logistics Services contract to deliver cargo, experiments and other supplies to the agency's Gateway in lunar orbit
- Multiple supply missions planned
 - 5 MT delivered cargo capability
 - Power to internal and external payloads
 - Trash removal
 - Automated RPOD (docking/undocking)
- Firm-fixed price, indefinite delivery/indefinite quantity contract
 - Guaranteed two missions per logistics services provider with a maximum total value of \$7 billion across all contracts as additional missions are needed

https://www.nasa.gov/press-release/nasa-awardsartemis-contract-for-gateway-logistics-services

Other Considerations

- Pros/cons landing capability for each payload or reusing across architecture with dedicated landing
- Payload access location and elevation from surface
 - Could be a primary driver
- Payload handling interfaces and standards
- Mission specific lander configuration may drive design
- Modularity and evolution paths may be considered in the design

Section	Description	Overall Weight
Reliability/ feasibility	Level of robustness; high degree of confidence that device or technique will be able to offload payloads.	30
Case for Mass and Volume Optimization	Idea considers mass and volume: case is made for either leaving a solution on the moon or including it in the lander or a combination of approaches.	25
Autonomy	The degree to which the technique can work autonomously or has the potential to work autonomously	15
Proposal quality	Quality of proposal: clear, concise writing; thoughtful and complete explanations of how the unloading design concept meets the specifications listed.	10
Flexibility of design	The design considers the ability to work with a variety of payloads and landers. Proposes recommendations for standardizing mechanical and electrical interfaces.	10
Applicability to the lunar surface	Ideas consider lunar environment factors such as: thermal, temperature, solar, dust, vacuum, etc.	10

While complete solutions are likely to score higher in the judging criteria, NASA is also interested in partial solutions. If you have a partial solution, we recommend forming a team to submit a complete approach.

Judging Criteria

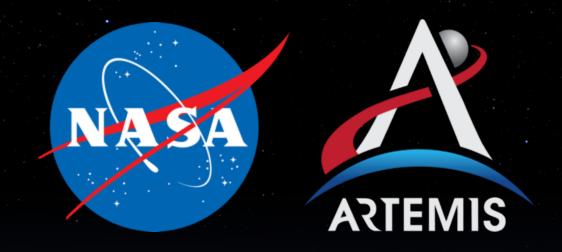
Monetary Prizes

This challenge will award up to \$25,000 in total prizes for up to 6 teams:

- One 1st place winner: up to \$10,000
- Two 2nd place winners: up to \$4,500 each
- Three 3rd place winners: up to \$2,000

Other Prizes

Present concept to NASA engineers


- Conference/virtual event for prize winners to present and interact with NASA (pending availability)
- Publicity announcing the winners

Wide promotion of the winner on social media

Participation in a webinar showcasing winning solutions to public

• See https://www.herox.com/LunarDelivery for more details on guidelines, timeline, and the challenge forum.

