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Executive Summary  
Please provide a 1-2 page, easily readable review of the main ideas. This is likely to be 
especially useful for people reading multiple submissions during the public voting phase. The 
executive summary should be readily understood by a technical layperson and include: 

● The high-level explanation of the proposed metric, reasoning and rationale for why it 
works 

● An example real world use case 

Metric Overview:  
The objective of the pie chart is to measure how faithfully the privatization algorithm preserves the 
most significant patterns in the data, within each map/time segment.  It does this by only 
considering the record types that make up at least k% of the total records (the ‘sufficiently thick pie 
slices’).   The less frequent events types are dropped from the data, and then a ‘pie chart’ is drawn 
up on the remaining frequent events.  A toy example is given below, with event types X, Y, Z, W, 
and frequency threshold 5%. 
 

Data-set Raw Event Counts Event Percentages Frequent Event Counts 

Ground Truth   [X:0,  Y:2, Z:28, W:20] [X:0%, Y:4%, Z:56%, W:40%] [Z:28, W:20] 

Privatized [X:26, Y:0, Z:2, W:22] [X:52%, Y:0%, Z:4%, W:44%] [X:26, W:22] 

 

 
 
Pie charts are drawn up for both the ground truth and privatized data in every map/time segment. 
These pie charts are next compared using the Jensen-Shannon distance metric (JSD), which is 
essentially a symmetric version of K-L divergence (see technical background section for more 
details).   A JS distance of 0 means the distributions match precisely; a JS distance of 1 means they 
differ completely.  In this example we see that the distributions are similar for label W (41.6% vs 
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45.8%), but differ completely over labels Z and X.   The total JSD score (with base=2) for these two 
distributions is 0.75  
 
However, the JS distance by itself doesn’t capture the practical usability of the privatized pie chart. 
We include two additional score penalties for deviations that could impact decision making over the 
privatized results:  Misleading Presence Penalty, and  Bias Penalty. 
 
In our toy example, label X appears in the privatized pie chart but not in the ground truth pie chart. 
Added privatization noise can cause an event that was infrequent in the ground truth data to appear 
as frequent in the privatized data, and these spurious label counts are misleading for decision 
makers.  We add a Misleading Presence Penalty (MPP) to the JS distance for each label that 
exists in the privatized pie chart but not in the ground truth pie chart.  
 
Pie charts are a good tool to confirm that the proportion of record types is maintained, but they hide 
the actual count of records.   It is possible for added privatization noise to increase the apparent 
number of events that occur, even while maintaining the relative proportions of frequent events.   To 
penalize positive bias in record counts, we include a Bias Penalty (BP) for map/time segments 
whose total record count varies significantly from the true record count.  
 
Because higher scores are nice to have for motivating competitions, the complete score for one pie 
chart is computed as (1 - min(JSD + MPP + BP, 1)), where 1.0 is a perfect score and 0.0 indicates 
a pie chart with so little utility as to be unusable.    Our total score for one full temporal map data set 
is the simple sum of pie-chart scores across all map and time segments.  
 
Using default parameter values of MPP = 0.2, BP threshold = 500, and BP = 0.25, our toy example 
score is (1 - (0.75 + 0.2 + 0)) = .05  

Real World Use Case:  
Pie charts are often used by analysts and decision makers, when drawing up reports on public 
policy issues.   Relevant to the NIST Challenge’s Sprint 1 use-case of Baltimore 911 Call and Police 
Incident Data, below we include examples from the Police Foundation’s  document: Baltimore 
Police and Community Input Reports on Community Policing and Engagement.  This report, on 
potentially sensitive survey data about community engagement, primarily uses the pie chart format 
for reporting its results.  The pie chart reporting format is common across studies performed by the 
Police Foundation for their member organizations.  
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Metric Definition  
Please provide the following: 

● Any technical background information needed to understand the metric.  Note that these metric 
write-ups should be accessible to technical experts from a diverse variety of disciplines.  Please 
provide clear definitions of any terms/tools that are specific to your field, and provide a clear 
explanation for any properties that will be relevant to your metric definition or defense.  

● A written definition of the metric, including English explanation and pseudocode or clear step-by-step 
instructions that have been clearly written and annotated with comments. Code can also be included 
(optionally) with the submission. 

● Explanation of parameters and configurations.  Note that this includes feature-specific configurations. 
For instance, a metric could reference “demographic features” or “financial features” for specific 
treatment, and given a new data set with a new schema, the appropriate features could be specified 
in a configuration file without loss of generalizability. 

● Walk-through examples of metric use in snapshot mode (quickly computable summary score) and/or 
deep dive mode (generates reports locating significant points of disparity between the real and 
synthetic data distributions) as applicable to the metric. 

Technical Background  
 
Jensen Shannon Distance:   
 
The Jensen-Shannon distance (metric) is the square root of the Jensen-Shannon divergence. 
Given two probability vectors p and q, the Jensen-Shannon distance is defined as, 

 √ 2
D(p || m)+D(q || m)  

where m is the pointwise mean of p and q and D is the Kullback-Leibler divergence. 

 
The Jensen Shannon Distance is based on the more commonly used KL divergence; however, 
unlike KL divergence it measures the symmetric distance between two distributions.   A symmetric 
metric is important in our use case because due to positive privatization noise, the differentially 
private pie chart may include labels that do not appear in the ground truth data.  KL divergence 
measures difference from a specified baseline distribution (ie, distance from the ground truth in our 
case) and is undefined at points where the baseline distribution is 0.   This effectively means that 
the KL divergence is infinite whenever the privatized pie chart includes an extra label.   Our metric 
penalizes spurious labels with the Misleading Presence Penalty…  but an infinite penalty might be 
too harsh.  
 
Additional resources:  
 

● Scipy Library Documentation: 
https://scipy.github.io/devdocs/generated/scipy.spatial.distance.jensenshannon.html 
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● Detailed accessible explanation of KL divergence, Jensen Shannon Distance, and the 
relationship between the two: 
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-us
ing-jensen-shannon-and-kullback-leibler-8d05af514b15 

Formal Metric Definition  
In this section we provide a detailed definition of the pie chart metric and a step-by-step 
walkthrough of how to compute it.  
 
One row of the differentially private submission file dpi represents a vector of non-negative incident 
counts for a particular neighborhood-month in the standard order (ascending by incident type code), 
while the corresponding ground truth vector gti represents the true counts. Here’s a simplified 
example for one time period with only four incident counts: 

 
We use a custom “pie chart” loss metric to compare the sets of counts. This metric is inspired by a 
typical public policy use case for aggregated data where insignificant entries below some 
percentage threshold are dropped and then the resultant entries are shown as a breakdown 
summing to 100%. 
 
After removing insignificant counts, this metric is essentially based on the information-theoretic 
Jensen Shannon distance plus some penalties that try to capture undesirable properties from 
Differential Privacy subject matter expertise: (1) a misleading presence penalty (MPP) which 
quantifies the harm done to analyses where seemingly important counts appear but are purely an 
artifact of privatization, and (2) a bias penalty (BP) where the proportions of counts may be correct 
but the overall number are unreasonably far from the truth. 
 
The difference between two vectors is evaluated using the following steps: 
 

● Zero out non-significant counts in each vector and re-normalize. Any incident count in 
either dpi or gti  that accounts for less than FT% (Frequency Threshold) of the overall 
incidents in this vector is set to zero.  In this example FT is set to 5%.  After zeroing 
insignificant counts, each vector is divided by its new sum to get the proportions instead of 
raw counts. 

 
● Calculate the individual score components: 

○ Calculate the Jensen–Shannon distance (JSD) between the normalized vectors. 
Divide each vector by its sum to get probability vectors and then calculate JSD. 
Using base-2, the JSD for these vectors is: 0.7505 

○ Add a misleading presence penalty (MPP) for each time a category of incident 
shows up as significant in the privatized data but is actually zero in the ground truth 
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vector. In this example, we’ve set the additive penalty to 0.2 per misleading 
presence. 

 
○ Add a bias penalty (BP) (in this example, BP = 0.25), if the sum of the original, 

pre-thresholding counts in dpi is more than BPT (Bias Penalty Threshold) off from 
gti.  For the example below, we’ve set BPT = 500.  
  

 
 

● Sum up the scoring components and clip to [0, 1]. Putting the pieces together, 
PieChart(dpi, gti) = 1 - min(JSD(dpi, gti) + MPP(dpi, gti) + BP(dpi, gti), 1.0) which means 
that the minimum score for each map segment and time period is 0.0, and given that each 
component is non-negative the overall score will therefore be between 0.0 and 1.0.  In our 
toy example, the total score is 1 - min((0.75 + 0.2 + 0), 1.0) = 0.05.  

 
The overall score for a submission will be the sum of all of these individual pie chart losses across 
all map and time segments.  For the police incident data set we are using in Sprint 1 of the NIST 
Differential Privacy Temporal Map Challenge, this totals a maximum possible score of 1,008. 
However, the maximum score possible while preserving privacy will be lower.  
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Explanation of Metric Parameters:  
 
In this section, we provide a list and quick explanation for each of the parameters that affect the 
performance of the metric.   We first list settings that are specific to configuring the metric to work 
on a given input data schema.   We then cover the tuning parameters that can impact coverage and 
discriminative power of the metric (independent of the schema).  
 
 
Data Configuration Parameters:  

 
Record Type:  

The pie chart metric is based on a histogram of record types-- it uses a set of the counts of 
each ‘type’ of record, in each map and time segment.  The precise definition of record type should 
be configured based on the input data schema.  
 
In the example data-set for Sprint 1, the Baltimore police incident and 911 data, it’s natural to define 
the record types as the call/incident descriptions (ex: Burglary, Traffic Accident, Elopement, etc).  
 
However in a more complex data domain, there may be more options for configuring the record 
type.  For example, given demographic data which includes information on Sex, Age and Race, the 
record type could be configured as a combination of all three features (ie, a record type label could 
be specified as: [F, 36, White]).   This may not be the best approach, however.  The pie chart metric 
focuses on patterns of high frequency record types, and if the data is spread out too thinly across 
many possible record types (i.e: 2 Sexes X 100 Ages x 6 Races = 1,200 possible record types), the 
pie chart metric may not function effectively.    Instead the metric could be configured to use record 
types that reference fewer features (ie, marginal counts).  Selecting Sex and Race (ie, a record type 
would be [F, White]) will result in a total of 12 possible record types and will likely capture 
meaningful frequent patterns in the data.  Numerical variables can be binned (collected into 
ranges), to reduce the number of possible values.  Selecting Age, but binning into 5-year bits (ie, a 
record type would be [35-40]), results in a total of 20 possible record types.  Depending on the 
choice of record type definition, the pie chart metric will evaluate different aspects of the privatized 
data quality.  
 
 
Tuning Parameters:  
 
Frequency Threshold:  FT 

The pie chart metric begins by removing all record types that occur ‘infrequently’. The 
frequency threshold is a parameter that can be set; smaller thresholds will tend to have higher 
discriminative power (scoring more harshly the differences between the privatized and ground truth 
data), higher thresholds will tend to focus more narrowly on maintaining the most significant 
patterns in the data. In the example above (and in the Challenge) the Frequency Threshold has 
been set to 5%.  In the model defense we explore the impact of other possible threshold values.  
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MPP Penalty Amount:  MPP 

The metric penalizes privatized pie charts which include labels that don’t appear in the 
ground truth pie chart (Misleading Presence Penalty).  The amount of this penalty is a parameter 
that can be set, with higher penalties scoring more harshly for deviations from the ground truth data. 
For the example above, and the Challenge, we’ve set MPP = 0.2, intuitively docking a “letter grade” 
for every spurious label in the privatized pie chart.  

 
Bias Penalty Threshold: BPT 

In addition to evaluating the record type ratios that appear in the pie chart, the metric 
penalizes data where the total record count in a given time/map segment varies ‘significantly’ 
(beyond a specified threshold) from the ground truth data.  This threshold is a parameter that can 
be set; lower values will be more sensitive to added privacy noise.   For the first Sprint of the 
Challenge, we’ve generously selected BPT = 500, based on the distribution of positive bias on the 
baseline solution at epsilon = 2.   This may be changed for later sprints.  

 
Bias Penalty Amount:  BP 

Finally, the amount of the penalty incurred by violating the Bias Penalty Threshold is a 
parameter that can be set.   Higher penalties will score more harshly for the impact of privacy noise 
on record totals; this may be especially noticeable in privacy algorithms that independently add 
noise to a large number of record types, or ground truth data sets with many counts at or near zero 
(if the algorithm simply rounds up negative privatized values to zero).  For this challenge we’ve set 
BP = 0.25.  
 

Snapshot and Deep Dive Modes:  
In this section we describe how the Pie Chart metric can be used to either give a single total data 
quality score for a privatized temporal map (Snapshot Mode), or to investigate and pinpoint sources 
of disparity between the privatized and ground truth data (Deep Dive Mode).  
 
Snapshot Mode:  

The basic pie chart metric gives a score between 0.0 and 1.0 for a given map/time segment. 
To get a single score for aloof the map/time segments in a full temporal map, we propose simply 
summing the scores for the individual pie charts.   This will result in a minimum score of 0.0 and a 
maximum score equal to [total number of map segments] x [total number of time segments].  The 
score, intuitively, is proportional (but not equal) to the number of map/time segments that performed 
‘well’.  
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Deep Dive Mode:  
Because the pie chart metric scores each map/time segment separately, it provides clear 

utility for deep dive investigation.   The visualizer we provide for the challenge leverages this.  
 

 
The Interactive Map allows you to see 
your scores geographically (across all map 
segments).  Here we see that dense urban 
neighborhoods closer to the city center, 
which generally contain more records, 
have better scores than rural and 
suburban neighborhoods where records 
may be more sparse.  These are 
challenges that will need to be creatively 
overcome to achieve good performance on 
the Sprint 1 task.  
  

 
 
 
 

 
 
 
 
The Temporal Scores Chart 
allows you to select a given 
neighborhood and see the 
change in your pie chart 
scores in that neighborhood 
over each of the time 
segments.   Here we see the 
scores are relatively uniform 
across months for our 
baseline privacy algorithm. 
However, a privacy algorithm 
that leverages the temporal 
aspect of the problem, for 
example by aggregating 
counts across multiple time 
segments, might see more 
interesting variation here.  
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 Metric Defense 
 
Please provide the following:  

● The metric’s tuning properties that control the focus, breadth, and rigor of evaluation. 
● The discriminative power of the proposed metric: how well it identifies points of disparity between the 

ground truth and privatized data 
● The coverage properties of the proposed metric: how well it abstracts/covers a breadth of uses for the 

data 
● The feasibility of implementing the proposed metric. For instance, what is the computation time and 

resource requirements for the metric when running on data? How does the metric scale with an 
increase in variables, map segments, time segments, and records? This information may include 
empirical results (e.g. runtime) or theoretical results (e.g. mathematical properties). Feel free to 
provide assumptions about hardware (e.g. CPU model, memory, operating system) and feature 
constraints.  

● Examples of 2-3 very different data applications where metric can be used. 

 

Exploration of Parameter Tuning:  
 
Data:  
The data set used for these analyses was the 2019 Baltimore Police Incident and 911 data-set 
provided as publicly available data in Sprint 1 of the NIST Differential Privacy Temporal Map 
Challenge.   We look at the distribution of pie chart scores on a subsample of  individual 
neighborhoods/months, selected uniformly randomly from the ground truth data.  We generate 
privatized data using the baseline privacy algorithm at 3 scales of noise addition.  The ‘scale’ refers 
to the mean absolute privacy noise value sampled from the laplacian distribution (ie, the scale 
parameter of the laplace distribution).  Larger scales imply noisier data, and better privacy (smaller 
epsilons):  We consider scale = 2 (epsilon = 10), Scale = 10 (epsilon = 2), Scale = 20 (epsilon = 1).  
 
 
Metric Parameters:  
Except where otherwise specified, the pie chart metric parameters have been set to the defaults 
given in the Metric Definition (FT = 0.05, MPP = 0.2, BPT = 500, BP = 0.25).  
 
 
Score Composition:  
The Pie Chart metric has three components (as described in the Metric Definition section above): 
JSD, MPP, BP.   Here we look at the impact each component has on the total score, dependent on 
the quality of the data. 
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 At scale 2 (where most record counts will 
have noise addition in the approximate 
range +/- 2), we see that the vast majority 
of the score is determined by the 
Jensen-Shannon distance metric that 
compares the privatized and ground truth 
pie charts.   There are relatively few 
instances of a pie chart label appearing in 
the privatized data when it was not in the 
ground truth data (MPP), and, 
unsurprisingly no instances of the total 
count of records in the privatized data 
varying from the ground truth data by more 
than 500 (BP).  
 
At scale = 10 (epsilon = 2), we have a 
stronger level of privacy protection, but the baseline privacy algorithm is showing its failure points. 
We are seeing more frequent occurrence of labels appearing in the privatized pie charts that are not 
in the ground truth pie charts (MPP) as larger added noise values have a better chance of pushing 
counts above the frequency threshold.    We also see a significant increase in the bias penalty for 
privatized data that differs from the ground truth by more than 500 records.  (Note to privacy 
algorithm competitors-- because we are adding many noise values in the +/- 10 range to counts 
across nearly 200 different record types, this is unsurprising.   Although the Laplace noise is 
symmetric around 0, so we are adding both positive and negative noise, the baseline privacy 
solution simply rounds up negative counts to 0.  This leaves a noise distribution with a significant 
positive bias).  
 
At scale = 20 (epsilon = 1), we see that there are still issues with both spurious labels (MPP) and 
positive bias (BP), but the Jenson-Shannon distance itself JSD) is now making up a larger portion of 
the total score.  This is likely occurring as large noise values begin to impact the pie slice widths (ie, 
the normalized distribution of high frequency record types) even among the more frequent record 
types and in map/time segments with more total records.  
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Effect of Frequency Threshold:  
We now briefly explore the effect of increasing and decreasing the frequency threshold from the 
default value 5% (FT = 0.05).  
 
At the 5% (FT = 0.05) threshold, most scores for single neighborhood/month pie charts are around 
0.66 for scale 2; they lower to around 0.2 for scale 10 (once the MPP and BP penalties begin to be 
incurred more often), and they fall to around 0.11 for scale 20 as the quality degrades somewhat 
further.  
 
However, if we lower the frequency threshold to 3% (FT = 0.03), the ground truth pie chart will 
include ‘thinner’ pie slices, and thus the metric becomes more sensitive to smaller amounts of 
added privacy noise.   At scale 2, scores fall around 0.55, at scale 10 they drop further to 0.095, and 
at scale 20 the privatized pie charts begin to very little utility, with scores closer to 0.03.  
 
Raising the frequency threshold to 10% (FT = 0.10) will narrow the focus to only the more frequent 
event types (the thicker pie slices).   This decreases the sensitivity of the metric to added privacy 
noise and has the impact of improving the Jensen Shannon distance for the smaller noise scales. 
At scale 2, these scores range around 0.762, significantly better than the scores at the 5% 
threshold.  For the larger noise scales, though, where MPP and BP penalties impact the score, the 
scores are essentially the same as the 5% threshold (ranging around 0.2 for scale 10, and 0.112 for 
scale 20).  
 
As 5% is more a common threshold than 10% in real world pie charts, we chose the 5% default.  
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50% Sampling Error Benchmark:  
Finally we apply the pie chart metric to a 50% sampling error benchmark.  When a metric has high 
discriminative power and is very sensitive to discrepancies between the privatized and real data, it 
may be difficult to get a sense of what a “good” metric score is.  We can get a benchmark score for 
good performance by comparing the noise in our privatized results to sampling error.  In this case, 
we take two uniform random 50% subsamples of the full incident record data, and then arbitrarily 
choose one to treat as ground truth and another as the privatized data, and we compute the pie 
chart metric score (across all neighborhood/months).  This effectively gives us the difference 
between two views of the same ground truth data.  If the added privacy error is less than the 
sampling-error benchmark, the added privacy noise is comparable to variation typically encountered 
due to sampling.  The distribution below was created with repetitions of the 50% subsampling 
procedure.  We see that it actually performs worse on average than the 5% and 10% threshold pie 
chart scores at scale 2.  This is likely due to the sensitivity of the pie chart metric to small 
differences in distributions in neighborhood/months with few event records.  
 

 
 
 
 
Further Questions:  
At our challenge launch deadline rapidly approaches, our analyses on the tuning properties of the 
Pie Chart metric are limited to the above.  However, there are other interesting questions that could 
be explored with respect to this metric:  

● How does the pie chart metric score change as the number of possible record types 
increases, given a similar power-law distribution of data? 

● If we increase the MPP to 1.0 (effectively having zero tolerance for spurious labels), how 
does that affect the score distribution?  How does it affect the 50% sampling error 
benchmark?  

● What is the Jensen Shannon Distance score for distributions that closely match on all but 
one record label? What is the maximum error a single record label can have while 
maintaining a total Jensen Shannon score above the 50% sampling error benchmark?  
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● How sensitive is the Pie Chart metric to relatively small differences in map/time segments 
that have very few records?   To what extent does setting the FT higher mitigate this effect?  

● Can we define a minimum score threshold for “trustworthy” privatized pie charts, and then 
classify map/time segments as “feasible to privatize” by whether the sampling error 
benchmark achieves a trustworthy score on those segments?  

 
Submissions to the metric challenge (with ample time between the challenge launch and the 
January submission deadline), should feel welcome to more fully explore interesting properties of 
their own metrics, either theoretically or empirically as appropriate.  Questions relating to edge 
cases, impact on practical use cases, and useful or unexpected properties are all of interest.  
 
 
Description of Discriminative Power:  
Every metric will have both capabilities and limitations; no single metric will capture all possible 
definitions of utility.  The objective of this section is to clearly understand and summarize the 
properties of the metric.  
 
In this section we briefly outline some of the capabilities and limitations of the pie chart metric with 
respect to its discriminative power-- how well it can distinguish between the ground truth and 
privatized data.  
 
Capabilities 

● The pie chart metric identifies disparities between the distribution of high frequency record 
types 

● The pie chart metric specifically penalizes positive (or negative) bias in total record counts 
● The pie chart metric specifically penalizes when rare large noise values are sampled from 

the laplace distribution, causing spurious record types to appear to be high frequency in the 
privatized data.  

● We’ve demonstrated that the pie chart metric responds to small changes in the value of 
epsilon (or sampling error), and allows us to meaningfully understand the impact of those 
changes on the data.  

 
Limitations 

● The pie chart metric does not measure the impact of privatization noise on patterns in less 
frequent record types; those record types are discarded during the frequency thresholding.  

● The pie chart metric does not capture the relative ranking of high frequency record types.  In 
general, Jensen-Shannon distance summarizes the total difference in distributions; two 
similarly-sized pie slices may change order without significantly impacting the JS score.  

● The pie chart metric does not measure trends across time.  Scores are summed across all 
time/map segments without attention to any broader patterns.  

● The pie chart metric focuses on record types, effectively categorical information; if the data 
includes numerical features these must be partitioned into bins, and the width of those bins 
will impact the discriminative power of the metric.  
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Description of Coverage: 
Every metric will have both capabilities and limitations; no single metric will capture all possible 
definitions of utility.  The objective of this section is to clearly understand and summarize the 
properties of the metric.  
 
In this section we briefly outline some of the capabilities and limitations of the pie chart metric with 
respect to its coverage-- how well it represents a breadth of possible use cases.  
 
Capabilities 

● Pie charts are a commonly used tool for communicating survey results in public policy and 
other decision making contexts.  They provide the reader with a quick sense of the ‘most 
significant’ simple features of the data.  The pie chart metric evaluates whether the 
privatized data will be suitable for these common, basic applications.  

● Because the pie chart metric evaluates the relative proportion of frequent record types, a 
high pie chart score is an indicator that the privatized that will maintain utility for policy 
decisions on questions like funding, fairness, and staff/resource placement  (although we 
have not explicitly studied the relationship between the pie chart score and funding 
disbursement).  
 

Limitations 
● The pie chart metric doesn’t cover more complex analytics or machine learning tasks (ex: 

regression, classification) which may have different sensitivities to added noise. 
● As mentioned above, the pie chart metric doesn’t cover applications that study larger 

patterns/trends across time or geography 
● The pie chart metric focuses on categorical information (record types), and does not 

evaluate for many criteria specific to numerical data, such as whether the privatized data 
maintains long tailed distributions or maintains accuracy across repeated numerical 
operations over privatized data (“differences of differences”).  

● The pie chart metric doesn’t cover applications that reference infrequent record types.  
 

 
 
Scalability/Feasibility:  
 
The pie chart metric is a constant time operation in terms of the number of record types, map 
segments and time segments.  The pie chart metric on the 196 record types and 10,008 map/time 
segments in the Sprint 1 Baltimore Police Data can be computed within seconds on a typical laptop.  
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Generalizability, Alternate Use Cases:  
 
In this document, we’ve demonstrated how the pie chart metric can apply to event records.  Here 
are a few additional examples how the pie chart metric could be applied:  
  

● The pie chart metric can apply to demographic data, financial data, etc, by using marginals 
(and binning numerical features) when defining the “record type”, as outlined in the 
Parameters-Configuration, in the Metric Definition.  
 

● Although by default the pie chart metric does not capture trends across time or geography, it 
could be applied to capture more temporal information.   By setting the record types to be 
“Events that happened between timestamp x_1 and timestamp x_2”, a pie chart can be 
drawn up to measure clusters of records in time the same way we’ve used it above to 
measure distributions in feature space.   Similarly, the pie chart metric could be used to 
capture frequent patterns geographically, by setting the record types to be “Events that 
happened in region X”.  Combinations of time and geography are also possible.  

 
. 
 
 
 
...And that’s it!  
We hope this challenge gets you thinking creatively and deeply about the interplay of data, space 
and time, and the possibility of capturing the meaningful patterns in the data without being overly 
sensitive to any individual data point.   
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