

Ocean Observing Prize Rules Workshop Notes

Now Open for Public Comment

The Ocean Observing Prize DEVELOP Competition will release a Final Rules Document that will provide participants with instructions and rules to participate in the DEVELOP Competition of the Ocean Observing Prize. Initial technical specifications and key questions were drafted by the prize team and then shared with attendees during the Rules Workshop on May 27 and 28, 2020. This document is a compilation of questions and notes from the Workshop. These Rules Workshop notes are posted on the Ocean Observing Prize HeroX website to solicit public comment and feedback.

DOE is collecting feedback on anything in the Rules Workshop Notes through July 10, 2020. Submissions should be sent to <u>wptoprizes@ee.doe.gov</u> with the subject "Ocean Observing Prize Rules Workshop". Please reference the relevant line numbers from this document that relate to your comment.

Table of Contents

Executive Summary	1
Purpose	2
Introduction	2
Participants	3
Rules Workshop Discussion Notes	4
Impact and Integration	4
Summary	4
Notes	4
Physical Characteristics	8
Summary	8
Notes	9
Instruments and Payload	12
Summary	12
Notes	12
Navigation and Communications	16
Summary	16
Notes	17
Power and Energy	22
Summary	22
Notes	22
Operations and Safety	29
Summary	29
Notes	30
Crosscutting Feedback	36
Intended Missions	37
Responses to the Suggested Trials	38
Workshop Specific Feedback	39

1 Executive Summary

2 The Ocean Observing Prize is a DOE and NOAA-led prize meant to incentivize innovative

3 systems that integrate marine renewable energy with ocean observing platforms. The

4 DISCOVER Competition and DEVELOP Competition are two separate competitions that make

5 up the Ocean Observing Prize. The Prize Administration team is currently scoping the rules for

6 the DEVELOP Competition and hosted a Rules Workshop to solicit feedback from the public on7 preliminary ideas.

8

9 Over 60 participants joined a virtual Rules Workshop on May 27 and 28, 2020. These

10 participants were divided into three of six breakout groups, each of which focused on different

11 subsystems or components. During each 45 minute session participants provided feedback on the

draft rules document and answered questions relating to that subsystem or topic. This feedbackwas recorded as notes.

13 14

Summaries for each breakout group are below, and detailed notes from each group can be foundunder that particular group's section.

- Impact and Integration: Participants assessed the real-world benefits and potential end-uses of systems that are likely to emerge from the prize and asked what are the integration issues that need to be considered when putting all of the subsystems together?
 Physical Characteristics: Participants provided feedback on physical aspects of systems to compete in the prize, such as: max overall size, weight, and volume, depth rating, and more.
- Instruments and Payload: Participants provided feedback on different sensors that
 should be hosted by the vehicle for data collection and ways to represent dummy
 payloads which are representative of real instruments in power draw and duty cycles.
 - Navigation, Control, and Communications: Participants provided feedback on underwater vehicle navigation and control methods, bearing in mind that this is an energy prize and not an autonomy prize. Related to this topic is communications and how data will be relayed on and off the vehicle and through what medium.
 - **Power and Energy:** Participants provided feedback on power generation abilities of vehicles in this size range using wave energy harvesting and their ability to recharge batteries while balancing other energy consumers on the vehicle.
 - **Operations and Safety**: Participants provided feedback on various operational aspects of these systems such as safety requirements, launch and recovery of the vehicles, and required infrastructure for handling and transporting.
- 35 36

26

27

28

29

30

31

32

33

34

37 In addition to the six breakouts, the team collected information on testing during each breakout.

38 No testing will take place during the Design Contest, but competitors need to know what they

39 will eventually be assessed against in the subsequent Build Contest. Participants provided

40 feedback on practical ways to assess performance of prototypes. This feedback is reflected in the

- 41 notes section of each breakout.
- 42
- 43 44

1

45 **Purpose**

46

47 The Rules Workshop for the Ocean Observing Prize DEVELOP Competition - Design Contest

48 was held to help the Prize Administration team inform the contest scope, reduce risk, ensure a

49 level playing field, and generally address open questions. Workshop participants represent a

- variety of backgrounds and subject matter expertise in order to cover a diversity of perspectives;
- 51 specifically, unanimous agreement or even consensus on any particular topic was not an
- 52 objective. The feedback collected through the Rules Workshop will not dictate the official rules
- for the Design Contest, but will be considered by the Prize Administration team when writing the
 Official Rules Document.
- 55
- 56 The Ocean Observing Prize team is seeking any additional feedback on the breakout topics,
- 57 missions, trials, or any other information contained in this document.
- 58

59 Introduction

60

61 The Workshop had six different topical areas on which the Prize Administration team requested 62 feedback. In each of these topical areas, workshop participants were encouraged to provide

- 63 feedback on the following:
- 64 65

66

67

68

69

70 71

72 73

74

75

76 77

78

79

80 81

82

83

84 85

86

87

88

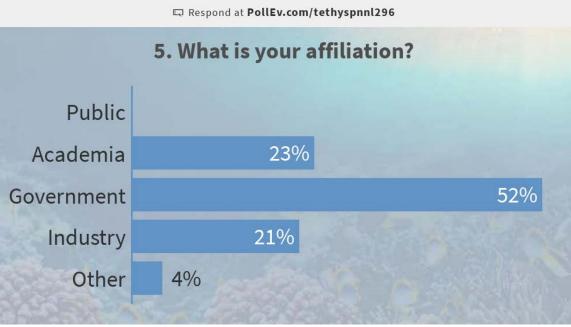
89

- Ways to score or assess
- Ways contestants might game or cheat
- Integration issues with other systems
- Best practice in industry
- Safety and regulatory aspects

The following topical areas had dedicated breakout groups:

- **1. Impact and Integration:** Participants assessed the real-world benefits and potential enduses of systems that are likely to emerge from the prize and asked what are the integration issues that need to be considered when putting all of the subsystems together?
- **2. Physical Characteristics**: Participants provided feedback on physical aspects of systems to compete in the prize, such as: max overall size, weight, and volume, depth rating, and more.
- **3. Instruments and Payload**: Participants provided feedback on different sensors that should be hosted by the vehicle for data collection and ways to represent dummy payloads which are representative of real instruments in power draw and duty cycles.
- **4.** Navigation, Control, and Communications: Participants provided feedback on underwater vehicle navigation and control methods, bearing in mind that this is an energy prize and not an autonomy prize. Related to this topic is communications and how data will be relayed on and off the vehicle and through what medium.

91 92 93


97

90

- **5. Power and Energy:** Participants provided feedback on power generation abilities of vehicles in this size range using wave energy harvesting and their ability to recharge batteries while balancing other energy consumers on the vehicle.
- 94
 95
 96
 6. Operations and Safety: Participants provided feedback on various operational aspects of these systems such as safety requirements, launch and recovery of the vehicles, and required infrastructure for handling and transporting.
- In addition to the six breakouts, the team collected information on testing during each breakout.
 No testing will take place during the Design Contest, but competitors need to know what they
 will eventually be assessed against in the subsequent Build Contest. Participants provided
- 101 feedback on practical and assessable ways to gauge the performance of the prototype systems.
- 102 This feedback is reflected in the raw notes of each breakout.
- 103
- Additionally, information was collected on potential missions, the suggested trials to test out
- 105 systems, and the organizers collected feedback on the general structure and overall intent of the 106 competition.
- 107
- 108 This document is structured to reflect the six breakouts and present summaries and raw notes
- 109 from the participants for each breakout in addition to the testing and general feedback.
- 110

111 Participants

- 112 Approximately 62 participants were involved in the workshop, including facilitators, notetakers
- and webinar hosts. See Figure 1 for participant affiliation.
- 114

6 Figure 1 - Participant Poll: "What is your affilliation" N = 52

Rules Workshop Discussion Notes 119

120

121 The following subsections are the consolidated notes from the Workshop organized by breakout 122 groups. Each section includes a summary of the information collected, drafted by the facilitators,

- 123 and the consolidated notes responding to facilitator questions as recorded by notetakers during 124 the workshop.
- 125 126

Impact and Integration 127

128

129 **Summary**

130 This group of about 20 subject-matter experts identified mission-specific issues around energy

131 budgets and charging logistics, instrumentation needs and availability, and overall mission

- 132 design and system integration. The group highlighted questions regarding the prize definitions
- 133 and structure, the intent, and what was within scope - items that should be resolved and clarified
- 134 going forward.
- 135

136 For Ice Sheet monitoring, the group noted that there is very little data available so any data

- 137 would be useful; the distance between charging location and monitoring location may be a
- 138 significant factor. Upward-looking echo sounder would be especially useful. There is some
- 139 potential for overlap in missions with the Great Lakes being ice-bound at times.
- 140

141 For Great Lakes invasive species monitoring, participants noted that the wave resource may be

142 limited or more challenging than for other missions; but at same time it was thought that the duty

143 and charging cycle could be shorter - charging could be close to observation. eDNA was noted as

- 144 a potentially significant dataset.
- 145

159

160

For Hurricane monitoring, the energy tradeoff between instrumentation and mobility was noted. 146

- 147 A week-scale charging time and larger battery capacity to enable multi-day observation could be
- 148 one concept. CTD profiler and ADCP (shear) and air-surface temperature instruments are all
- 149 relevant; some sense that instrumentation for this mission would be more off-the-shelf available
- 150 than for other missions.

151 152 Notes

- 153 • Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon 154 battery capacity and vehicle performance, permissible for a resident AUV? 155 • Applications-specific. Need to address each application separately to answer this 156 question.
- 157 • Not just about mission profile but also sensor payload and are where you're working. Tropical seas have shorter research times 158
 - Take what we can get in Arctic. So few observations, a couple of days or more would be good to get to those observations.
- Arctic/Antarctic most \$\$ for power budgets, 2-day mission requires a lot of 161 162 capacity comparison in comparison with Great Lakes, which only requires a few 163 hours between charge cycles.

164 165 166 167 168 169	• If you can get multiple days of operation after charging for a couple of weeks, in a hurricane setting, for example, 2-3 days of operation, that can be useful. In another setting with same scenario, charging for a couple weeks, then going into an ice operations, maybe capture an event that we couldn't before with that kind of charge.
170	• What are likely sensors to be used on board the vehicle?
171	• For Lakes application, predefined sensors: imagery, cameras, potentially acoustics
172	for bottom classification.
173	• To encourage people to think outside, eDNA for Great Lakes, in addition.
174	• eDNA. With hurricane scenario, CTD system measures temp and depth. Arctic
175	mission: Measuring amount of ice in monitoring glaciers moving in?
176	• Big application for us is monitoring sea ice and subglacial ice. Upward
177	looking/inverted Echo Sounder.
178	• Great Lakes. Sensor suite, while out there, measuring water quality parameters,
179	temperature.
180	• Current regime is ongoing sample over time allows us to map ocean features and
181	how they mix and don't mix with different storms coming by, so we can predict
182	whether the storm will be stronger or weaker. We want to know more about
183	intensity of storms.
184	• They want to add to hurricane sensors. ADCP to measure shear.
185	• Accelerometer is a low-power sensor that is still of use.
186	• Also measure wave energy. Statistical measuring of waves for WEC would be
187	useful information.
188	
189	• What useful data would be collected by these vehicles?
190	• Advantage of AUV over a glider, dissipation rates and so forth. Useful data to be
191	collected while recharging.
192	• Tradeoff between payload package and recharge time, tradeoff between payload
192 193	 Tradeoff between payload package and recharge time, tradeoff between payload package and mission time.
193	package and mission time.
193 194	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured
193 194 195	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just
193 194 195 196	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating.
193 194 195 196 197	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just
193 194 195 196 197 198	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes
193 194 195 196 197 198 199	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well.
193 194 195 196 197 198 199 200	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps.
193 194 195 196 197 198 199 200 201	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps. Some measure of downward light irradiance.
193 194 195 196 197 198 199 200 201 202	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps. Some measure of downward light irradiance. What about measuring shape of the ice, the boundary.
193 194 195 196 197 198 199 200 201 202 203	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps. Some measure of downward light irradiance. What about measuring shape of the ice, the boundary. Could measure the shape of the ice acoustically, usually we use a bottom tracker,
193 194 195 196 197 198 199 200 201 202 203 204	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps. Some measure of downward light irradiance. What about measuring shape of the ice, the boundary. Could measure the shape of the ice acoustically, usually we use a bottom tracker, side scan sonar, to look at the ice above.
193 194 195 196 197 198 199 200 201 202 203 204 205	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps. Some measure of downward light irradiance. What about measuring shape of the ice, the boundary. Could measure the shape of the ice acoustically, usually we use a bottom tracker, side scan sonar, to look at the ice above. For hurricanes, water (surface) and air temperature is important, affecting the
193 194 195 196 197 198 199 200 201 202 203 204 205 206	 package and mission time. In light of that, are there nonpower-hungry observations that could be captured with less impact on charging? Accelerometer or wave observation, with just floating. Leave CTD on is low data/transfer requirement, useful for deep salinity just before or just after the storm goes through. Also useful in Great Lakes environments as well. Temperature is important to measure. Water temps. Some measure of downward light irradiance. What about measuring shape of the ice, the boundary. Could measure the shape of the ice acoustically, usually we use a bottom tracker, side scan sonar, to look at the ice above. For hurricanes, water (surface) and air temperature is important, affecting the weather.

209 210	• Important for device to anticipate storms, rather than coming from remote data? Some feedback would be interesting. Forecasters would enjoy the data.
211	• Feed in mission parameters. If a storm is coming through, may want to measure
212 213	ice more frequently if it's about to be hit by a storm.
213	• Are there industry standards that should be adopted or enforced for sensor integration,
214	data collection, or communications?
215	 Standard for sensors would be serial interface, but most common in
210	oceanographic sensor world is RS232, but may not be obvious for how we want
218	to describe this.
219	• Several talking about adopting a robot system, ROS.org is one place to look.
220	Larger companies like Google are looking at that.
221	• A lot of folks are going to use 802.3 or ethernet for internet-facing things.
222	• RS232. Iridium standards.
223	• SAE has standards for control systems. Standard messaging set.
224	• Standards should be open standards.
225	• Given extreme environments in Hurricane, no docking station will be necessary.
226	
227	• What issues need to be considered for integrating all of these subsystems together?
228	• Power management should be a big part of the challenge. Some of that should be
229	up to contestants.
230	■ Is it okay for rules to dictate various modes of operation? Minimal
231	acceptable? Emergency Mode, Degraded mode, versus Full operational
232 233	Mode. How much recerve do we want? My expertise is making systems much
233 234	 How much reserve do we want? My expertise is making systems much more efficient by optimizing power and energy. Need to be smart about
234	power. I want to compete that way.
235	 You could see competitive choice there is around a stop and recharge, retract and
230	move on, or a WEC component that is always sort of on in many ways. Not
238	completely feathered. Innovations in those two areas are a tradeoff. Competitive
239	advantage in one over the other. That's where the competition is focused on.
240	Mistaken competitive advantage, though? But integration between WEC and
241	AUV is likely to be that tradeoff of size and operational capabilities. Stop and
242	charge or charge by moving.
243	• Subsystems within the same AUV for this argument. Instrumentation and
244	charging substations: how do we integrate multiple modes? Full performance,
245	standby modes.
246	• Integrating in one device.
247	• Physical characteristic issue. Center of gravity, weight and balance issue.
248	• This brings it back to the maneuverability issue. Integrating makes AUV larger
249	and heavier, certain tasks not as easy to accomplish. Collecting data in a tighter
250	spot might be challenging.
251	• Distance between where you can charge and where you need to do observations is
252	critical for ice shelf.

 Subsystems housed in same AUV, but power management, monitoring, communication are all different. Need multiple modes to manage power distribution for different activities. Keep safety systems completely separate. Navigation beacon transmitting should be separate from the WEC or anything else that could go wrong. Make sure we get the vehicle back. Are the intended missions good prototypical missions for a resident AUV? Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to co
 distribution for different activities. Keep safety systems completely separate. Navigation beacon transmitting should be separate from the WEC or anything else that could go wrong. Make sure we get the vehicle back. Are the intended missions good prototypical missions for a resident AUV? Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely. Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a
 Keep safety systems completely separate. Navigation beacon transmitting should be separate from the WEC or anything else that could go wrong. Make sure we get the vehicle back. Are the intended missions good prototypical missions for a resident AUV? Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL arely stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in stantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle, don't want to run into ice or icebergs, on a scell of less than a km, likely. Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created
 be separate from the WEC or anything else that could go wrong. Make sure we get the vehicle back. Are the intended missions good prototypical missions for a resident AUV? Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely. Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how up can is a resident AUV? It depends and varies a lot. Obvious concern is low close can w
258 get the vchicle back. 259 • Are the intended missions good prototypical missions for a resident AUV? 261 • Some depends on the purpose of WEC integration. Two types of missions: 262 duration or allow AUV to carry a sensor payload with a higher power draw than 263 • Some missions are long duration, and they will all have specialized sensors. 264 • Some missions are long duration, and they will all have specialized sensors. 265 • Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) 266 • Some missions are long duration, and they will all have specialized sensors. 267 • Maybe that's the competition. Want the WEC to be an effective part of AUV. 268 Cycles should be integrated with other components of AUV, not added. Low TRL 269 at early stage, same components in advanced AUVs. These would converge 270 because they are low tech. 271 • Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid 273 fatigue almost instantly. This is the design challenge. 274 • Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show 275 up. In ice scenario, it would be a much closer watch circle; don't want to run into 276 • Arctic
 Are the intended missions good prototypical missions for a resident AUV? Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifies of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plena
 Are the intended missions good prototypical missions for a resident AUV? Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario. meeds to go 1,000 or more miles away. A
 Some depends on the purpose of WEC integration. Two types of missions: duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do? Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifies of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vchicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions,
262duration or allow AUV to carry a sensor payload with a higher power draw than conventionally feasible. What do we want the WEC to do?264•Some missions are long duration, and they will all have specialized sensors.265•Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor)267•Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech.270because they are low tech.271•272Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge.274•275•276•277•278•278•280•281•282•283•283•284•285•286•287•288•288•289•280•280•281•282•283•284•285•285•286•286•287•288•288•289
263conventionally feasible. What do we want the WEC to do?264•Some missions are long duration, and they will all have specialized sensors.265•Higher draw of energy for some sensors - need an energy profile. (e.g. salinity266sensor)267•Maybe that's the competition. Want the WEC to be an effective part of AUV.268Cycles should be integrated with other components of AUV, not added. Low TRL269at early stage, same components in advanced AUVs. These would converge270because they are low tech.271•272components in particular. Recognizing that rigidly connected bodies almost fail in273fatigue almost instantly. This is the design challenge.274••Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show275up. In ice scenario, it would be a much closer watch circle; don't want to run into276ice or icebergs, on a scale of less than a km, likely. Great Lakes probably the same277range, half km to a km, depending on specifics of the mission.278•Arctic application most challenging for power budgets and most costly to deploy281•Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places.282NOAA would volunteer to do that initial demo.283•Is a recharge cycle for the AUV of a couple days to couple weeks, dependent284upon battery capacity and vehicle performance, permissible for a resident AUV?285•It depends and varies a lot. Obvious concern is
 Some missions are long duration, and they will all have specialized sensors. Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the occan waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely. Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be casiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 Higher draw of energy for some sensors - need an energy profile. (e.g. salinity sensor) Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
266sensor)267•Maybe that's the competition. Want the WEC to be an effective part of AUV.268Cycles should be integrated with other components of AUV, not added. Low TRL269at early stage, same components in advanced AUVs. These would converge270because they are low tech.271•272components in particular. Recognizing that rigidly connected bodies almost fail in273fatigue almost instantly. This is the design challenge.274•275up. In ice scenario, it would be a much closer watch circle; don't want to run into276ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same277range, half km to a km, depending on specifics of the mission.278•Arctic application most challenging for power budgets and most costly to deploy279equipment. Hurricane application might be quickest payoff, Great Lakes might be280easiest to do.281•Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places.282NOAA would volunteer to do that initial demo.283•Is a recharge cycle for the AUV of a couple days to couple weeks, dependent286upon battery capacity and vehicle performance, permissible for a resident AUV?285•It depends and varies a lot. Obvious concern is how close can we get a tender286ship, or does AUV need to go somewhere accessible for charging?287•Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps288similar. Big
 Maybe that's the competition. Want the WEC to be an effective part of AUV. Cycles should be integrated with other components of AUV, not added. Low TRL at early stage, same components in advanced AUVs. These would converge because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
268Cycles should be integrated with other components of AUV, not added. Low TRL269at early stage, same components in advanced AUVs. These would converge270because they are low tech.271• Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid272components in particular. Recognizing that rigidly connected bodies almost fail in273fatigue almost instantly. This is the design challenge.274• Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show275up. In ice scenario, it would be a much closer watch circle; don't want to run into276ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same277range, half km to a km, depending on specifics of the mission.278• Arctic application most challenging for power budgets and most costly to deploy279equipment. Hurricane application might be quickest payoff, Great Lakes might be280easiest to do.281• Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places.282NOAA would volunteer to do that initial demo.283• Is a recharge cycle for the AUV of a couple days to couple weeks, dependent284upon battery capacity and vehicle performance, permissible for a resident AUV?285• It depends and varies a lot. Obvious concern is how close can we get a tender286ship, or does AUV need to go somewhere accessible for charging?287• Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps288similar. Big concern from plenary s
269at early stage, same components in advanced AUVs. These would converge because they are low tech.271•Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge.274•Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission.278•Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do.281•Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo.283•Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV?285•It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging?287•Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal.291•Resident AUV, need a whole different set of hotel needs/loads, whether those are
269at early stage, same components in advanced AUVs. These would converge because they are low tech.271•Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge.274•Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission.278•Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do.281•Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo.283•Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV?285•It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging?287•Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal.291•Resident AUV, need a whole different set of hotel needs/loads, whether those are
 because they are low tech. Essentially, this is the WEC challenge encompassed in all of this. Fatigue of rigid components in particular. Recognizing that rigidly connected bodies almost fail in fatigue almost instantly. This is the design challenge. Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
272components in particular. Recognizing that rigidly connected bodies almost fail in273fatigue almost instantly. This is the design challenge.274Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show275up. In ice scenario, it would be a much closer watch circle; don't want to run into276ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same277range, half km to a km, depending on specifics of the mission.278Arctic application most challenging for power budgets and most costly to deploy279equipment. Hurricane application might be quickest payoff, Great Lakes might be280easiest to do.281Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places.282NOAA would volunteer to do that initial demo.283Is a recharge cycle for the AUV of a couple days to couple weeks, dependent284upon battery capacity and vehicle performance, permissible for a resident AUV?285It depends and varies a lot. Obvious concern is how close can we get a tender286ship, or does AUV need to go somewhere accessible for charging?287Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps288similar. Big concern from plenary session that comes up here. In plenary session,289for design/build competitions, type of batteries used came up. Not all batteries are290created equal.291Resident AUV, need a whole different set of hotel needs/loads, whether those are
272components in particular. Recognizing that rigidly connected bodies almost fail in273fatigue almost instantly. This is the design challenge.274Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show275up. In ice scenario, it would be a much closer watch circle; don't want to run into276ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same277range, half km to a km, depending on specifics of the mission.278Arctic application most challenging for power budgets and most costly to deploy279equipment. Hurricane application might be quickest payoff, Great Lakes might be280casiest to do.281Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places.282NOAA would volunteer to do that initial demo.283Is a recharge cycle for the AUV of a couple days to couple weeks, dependent284upon battery capacity and vehicle performance, permissible for a resident AUV?285It depends and varies a lot. Obvious concern is how close can we get a tender286ship, or does AUV need to go somewhere accessible for charging?287Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps288similar. Big concern from plenary session that comes up here. In plenary session,289for design/build competitions, type of batteries used came up. Not all batteries are290created equal.291Resident AUV, need a whole different set of hotel needs/loads, whether those are
273fatigue almost instantly. This is the design challenge.274•274•275•276ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same277range, half km to a km, depending on specifics of the mission.278•279equipment. Hurricane application most challenging for power budgets and most costly to deploy279equipment. Hurricane application might be quickest payoff, Great Lakes might be280easiest to do.281•283•283•284upon battery capacity and vehicle performance, permissible for a resident AUV?285•286similar. Big concern from plenary session that comes up here. In plenary session,287•288similar. Big concern from plenary session that comes up here. In plenary session,289for design/build competitions, type of batteries used came up. Not all batteries are290•Resident AUV, need a whole different set of hotel needs/loads, whether those are
 Hurricane case, sitting in a huge part of the ocean waiting for a hurricane to show up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 up. In ice scenario, it would be a much closer watch circle; don't want to run into ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 ice or icebergs, on a scale of less than a km, likely.Great Lakes probably the same range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 range, half km to a km, depending on specifics of the mission. Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 Arctic application most challenging for power budgets and most costly to deploy equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 equipment. Hurricane application might be quickest payoff, Great Lakes might be easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 easiest to do. Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 Doing some of the ice adaptability in Great Lakes and Arctic. Ice in both places. NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 NOAA would volunteer to do that initial demo. Is a recharge cycle for the AUV of a couple days to couple weeks, dependent upon battery capacity and vehicle performance, permissible for a resident AUV? It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 Solution of the second state of the s
 284 upon battery capacity and vehicle performance, permissible for a resident AUV? 285 0 It depends and varies a lot. Obvious concern is how close can we get a tender 286 ship, or does AUV need to go somewhere accessible for charging? 287 0 Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps 288 similar. Big concern from plenary session that comes up here. In plenary session, 289 for design/build competitions, type of batteries used came up. Not all batteries are 290 created equal. 291 0 Resident AUV, need a whole different set of hotel needs/loads, whether those are
 It depends and varies a lot. Obvious concern is how close can we get a tender ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 ship, or does AUV need to go somewhere accessible for charging? Hurricane scenario: needs to go 1,000 or more miles away. Arctic is perhaps similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 287 288 288 289 290 291 Arctic is perhaps 287 288 289 280 280 280 280 280 281 282 283 283 284 284 285 285 285 285 285 286 286 287 287 288 288 288 289 280 280 280 280 281 281 281 281 281 281 281 281 282 282 283 283 284 284 285 285 285 286 286
 similar. Big concern from plenary session that comes up here. In plenary session, for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 for design/build competitions, type of batteries used came up. Not all batteries are created equal. Resident AUV, need a whole different set of hotel needs/loads, whether those are
 290 created equal. 291 o Resident AUV, need a whole different set of hotel needs/loads, whether those are
291 • Resident AUV, need a whole different set of hotel needs/loads, whether those are
797 tor sensors or other monitoring. Can't truly go to sleen. Nome sensor needs to tell
it to go resident or out of residence. With hurricanes, it may have a massive watch
294 circle, something as simple as gps may be included. Whereas if the AUV is
hanging out at the surface for a period of time, may have a different set of

298	• Are there industry standards that should be adopted or enforced for sensor integration,
299	data collection, or communications?
300	• My concern is that if we are tied to one type of batteries, it may not be feasible to
301	meet some of these operational requirements. Safety needs to determine batteries,
302	and contestants need to be able to choose their own batteries to optimize mission
303	performance and wave generation.
304	• The competition should try to avoid becoming a battery competition, hence the
305	need to decide on a standard battery and reward the ability of the integrated
306	AUV/wave power unit to charge quickly
307	• Mission dependent. Time constraint of event is important (hurricane is quick or
308	might be sequential but changing ice mass is slow). Loitering around waiting for a
309	hurricane to pass by? That could be a matter of months. Ice changes a lot slower
310	than that, so there's more time for charge. Is there a huge time constraint for
311	something happening so fast that we can't get back out? Mussel migration might
312	be a different story.
313	• Batteries start to add a lot of weight and space for long duration. With 6- or 10-
313	hour duty cycle, battery size might be less important.
315	 Prototype versus deployable model is an issue.
316	 Invasive species mission is a little bit delicate, finding those species.
317	 WEC in the Great Lakes is more difficult than in the Atlantic.
318	 Sensors for Hurricane are off the shelf, whereas Great Lakes and ice, are there
318	sensors that work for those scenarios? Or do teams have to build them?
	sensors that work for those scenarios? Or do learns have to build them?
320	

321 **Physical Characteristics**

322

323 Summary

Approximately 25 domain experts discussed the rules regarding physical characteristics in the competition over three separate sections. Interesting ideas from the sessions include stimulating creativity by allowing functional requirements to determine the physical characteristics of the device, rather than define hard constraints within the prize. A prize-defined use case would allow the definition of these functional requirements, providing guidance for the otherwise widely varying likely physical characteristics.

330

331 Where possible, the competition was encouraged to incentivize the desirable physical

332 characteristics through a graduated scoring scale; leaving hard competition rules regarding

333 physical characteristics to be determined by the limitations of the (well-chosen) test facilities and

- 334 other realities of the test.
- 335

Participants voiced a desire to focus the competition on the energy harvesting portion of the

- 337 challenge, expressing concern over the added complexity of co-developing autonomy. There
- 338 was interest in potentially multiple-bodied solutions (e.g. surface docking stations), again with a
- 339 strong primary focus on the energy harvesting portion of the design and development.
- 340

341 To ensure that competitors arrive with a level of readiness to compete at the desired level of

- 342 complexity, the prize was encouraged to consider having applicants submit videos of the vehicle
- 343 performing basic capabilities as a stage gate, potentially as a part of a critical design review.

344345 Notes

346 What are the logistical constraints that should be considered for these vehicles? Is a pallet 347 the right volume constraint for shipping? The pallet size described is not consistent with the length of the AUV. It will be 348 0 difficult to make a UAV that fits on the pallet in one piece that has the required 349 350 capabilities. Making a UAV in multiple parts to be joined together for the trials 351 increases risks. To reduce risks and increase probability of a successful competition we would welcome a relaxing/removing of the requirement to use a 352 353 standard pallet. Reasonable, have to consider freight/airfare for transporting 354 Ο 355 • Most oceanographic equipment is sent in containers, a pallet may be restrictive. A 356 20' shipping container is suggested alternative 357 • NOAA uses a combination of deployment/storage containers. More space will be needed for additional equipment in most cases. Offshore distance necessary based 358 359 on mission (small boat deployment vs. a ship) should be considered. Testing 360 capability (pools, etc.) is also a factor. If the length is 2.5 m, the shipping size should be enlarged to accommodate that. 361 0 362 A 20' container seems too large. A double wide pallet would work. Does this size requirement include miscellaneous tools and equipment needed? (laptops, tools?) 363 364 No - just the vehicle. • If we make a 2.5m long AUV we would like to ship it in one piece. Forcing teams 365 366 to split their hull into 2 or 3 parts unnecessarily increases risks of water ingress 367 and/or other problems. This unnecessarily decreases the number of successful 368 entries that the competition will receive. 369 • Wave Energy Prize: Submit drawings ahead of time with regard to volume/layout. 370 • Suggest giving guidance rather than finite limits for portability, shipping, 371 deployment. 372 • Two-pallet dimension instead of one, perhaps a happy in-between the one-pallet restriction and a shipping container. 373 374 Statistically speaking the success rate in this trial will be adversely affected by the 0 375 requirement to ship on a standard pallet. If we design and build a 2.5m long UAV 376 then we would like to ship it in one piece and not split it into several pieces for 377 shipping. Limiting the size of the uav to 1.2m long would likely result in 378 difficulty meeting the power requirement. 379 Should a shipping weight restriction be used? • 380 A volume constraint is recommended - but there is a difference between 0 381 deployment (2 person) and size restrictions. • Is the expectation that they will be manually deployed by two people? Or can they 382 383 expect to have a mechanism to deploy them? (Use case dependent) 384 Pallet requirements and size help to standardize the AUV size with respect to the 0 385 testing requirements (pool access, etc.). Don't try to limit innovation beyond testing/deployment requirements. 386 387 What is the max size and weight for two-people to safely manage?

388	• Two-person not realistic for real-world, use a crane typically, usually have cranes
389	or davit that are more than capable, but lighter is generally better
390	• Should we include bigger/heavier vehicles to test? Two-person deployable vehicle
391	sounds reasonable.
392	• A-frames are usually used for NOAA missions, but smaller vessels can do
393	deployments (Gulf of Mexico for ex) and are a benefit for recovery/deployment.
394	• Basis for 80 kg selection? Pulled from existing designs. OSHA safe lift limit for 2
395	people is 75 lbs. If you are using a crane this limitation is lifted.
396	• Depth missions may require heavier platforms compared to shallow missions.
397	• DOE is trying to demonstrate basic functionality with this Prize, but these systems
398	aren't meant to be commercially ready by the end of this prize.
399	Question: Can it be a modified current system?
400	• The DOE is considering that. They can modify a current platform as long
401	as it meets the necessary requirements.
4 02 •	Could an 80 kg vehicle accommodate a wave energy converter?
403	• Yes, this could be a viable size, but it could pose some challenges. It also depends
404	on how much power you need. Estimated ~ 50 watts may be necessary. Power
405	requirement will drive this weight. Low wattage may be acceptable based on
406	'down time' allowed for recharging. Use case dependent. Great Lakes use case
407	may be optimal for a more controlled environment with planned recharging.
408	• Likely power output 0.5 to 25 watt. Consider battery pack for recharge time,
409	especially if targeting fast recharge times if deployed for hurricane purposes.
410	• Does an 80 kg with 30 kg for WEC sound reasonable for a WEC developer? It
411	sounds reasonable, initially thought it would be larger. Commercial WECS may
412	require a larger weight, and may not be completely scalable. (Generator and
413	batteries do not scale). Geometry is something to be considered. AUV
414	functionality/WEC functionality as a form factor.
415 •	What are the minimum infrastructure requirements (if any) to safely deploy and recover
416	the vehicles from a pool? From a coastal ocean environment in conditions up to sea state
417	4?
418	$^{-}$ O Discussion of using a crane vs small boat for deployment. In the Atlantic is may
419	be easier to use a small boat.
420	• Real world applications - you have to drop out of an airplane for hurricane season.
421	You're limited to that deployment req. Alternatively; you can deploy beforehand
422	and have them recharge until needed. (Build a 'fence' in hurricane alley).
423	• Have to consider biofouling, vessel strike, or vandalism when surface charging.
4 24 •	Should depth rating be an assessed metric? Does it matter for this stage of development?
425	How deep underwater must they go for testing?
426	• Depth requirement will drive weight. If it's not as deep, you will be able to hit the
427	weight requirements. This is relevant to use case.
428	• Concept of 'bonus points' rather than disqualification based on system
429	requirements. Make them 'recommended' guidelines, rather than required.
430	However, consider later potential issues such as testing capability (pool size,
431	doorways, OSHA requirements for weights) Set disqualifications rather high,
432	based on limitations (such as pool, etc). May deduct points based on larger gaps
433	from recommendations, but not full disqualification.

434 •	Should the rules incentivize faster devices, or maneuverable devices, or both?
435	• Steer away from the AUV aspects, focus more on the energy integration
436	• There should be enough speed to drive against currents, and dive
437	• Maneuverability may not be as essential (outside of avoiding ships, however this
438	would change if the mission is in the Arctic).
439	\circ The speed requirement of 0.5m/s effectively excludes gliders from the
440	competition. Gliders provide inherently greater range and endurance per unit
441	energy than propeller driven AUVs and are typically more capable in terms of
442	controlling depth for making measurements. Would you consider one speed
443	requirements for gliders and a different speed requirement for propeller driven
444	craft?
445	• Buoyancy requirements?
446	• Positive buoyancy is necessary, high reserve buoyancy is helpful – in event of
447	system failure, it can help it rise to the surface.
448	• Should there be center of gravity considerations to force righting moments for
449	stabilizing? Maybe beyond the scope of what to consider here.
4 50 •	Are there shipping or transportation restrictions to consider? Shipping of LiIon batteries
451	for instance
452	• Lithium ion batteries do have shipping restraints (air), and it may be good to set
453	safety precautions for storage, charging, discharging. Suggestion to prioritize
454	safety.
455	• Should we specify a standard/best practice for fire safety?
456	■ It may be good for all teams to use the same battery pack, or supply the
457	battery pack at the testing facility so that they won't be shipped.
458	• Is there a best-practice for battery fire mitigation to be used on a marine vehicle?
459	• NDBC buoys employ a safety feature for discharge (controlled failure).
460 •	Should waterproofness be demonstrated ahead of time, prior to arrival at the test tank?
461	Perhaps through an online video submission? Is this a prequalification?
462	• Suggestion to limit the number of teams in the progression by early testing/video
463	submission (between kickoff and testing). An intermediate testing may be good.
464	Idea of a design review (video submission for criteria - key performance
465	parameters to be verified by video such as buoyancy, waterproofness, etc.). Past
466	experience/performance may be helpful, but shouldn't be the sole consideration.
467	• Insert an intermediate step where a team submits a video to be scored based on
468	vehicle success/capability? This would serve as a good check in for the teams
469	who wish to participate in the pool testing.
470	• Other competitions rely on virtual presence in some cases - RobotX competition
471	• Need to ensure that competitors don't cheat but swapping out parts during the
472	video or submitting fraudulent videos
473 •	Should vehicles design around vessel constraints such as available deck space, load limits
474	for cranes or davits, etc.? If so which ones?
475	• 200 lb davits (hand operated) are available at certain testing facilities. This might
476	be a good limit to bear in mind.
477 •	Does the energy harvesting source have to be located within the vehicle?
478	• Conflicting resources management of the teams to either prioritize the design
479	against requirements, mission specific goals, or the actual energy harvesting

- 480 component? Could the teams be given a standard AUV to start with to standardize 481 payload, weight, dimensions, etc. This may allow more time to focus on the 482 energy components necessary. The WEC could be deployed as part of the 483 payload, for example. Additional thoughts 484 485 We spent some time discussing the physical requirement of the vehicle, mostly 0 486 due to logistic and testing facility limitations. Most of those requirements are 487 based on existing products in the market. In my opinion, such requirements will 488 only limit innovations. By creating a 'box' (literally) based on commercial 489 products in 2020 (which were developed in 2010s), I doubt we will be able to find 490 any breakthroughs that truly deserves our investment for decades to come. 491
- 492 Instruments and Payload
- 493

494 <u>Summary</u>

495 Specify less in terms of instrumentation. Focus on defining the minimum mission for the testing.

496 Taking the complexities of an AUV out of the equation might improve the outcomes for this

497 prize. We need to decide if integration of the WEC and the AUV is a key part of this

498 competition, and how much the AUV needs to be capable of doing. Funding will limit how much

499 can be accomplished if we're asking people to design an AUV, a WEC, integrate them, and add

500 sensors. Support expressed for dummy payloads in terms of a generic mission. Recommending a

501 standardized, modularized device with a CTD (provided, or specified) that can be used to

validate energy conversion and quality of data collection. Energy conversion is the main focus.

503 <u>Notes</u>

504	• What is the minimum volume or weight required for a typical vehicle payload?
505	• Current specs are fairly small (2 person carry). Expecting that effective (with
506	respect to energy harvesting) devices will require larger size / wetted area.
507	• Minimize specs for AUV design so that teams can focus on energy harvesting. Set
508	basic requirements on volume, weight, power, and let the teams build around that.
509	Several others agree that current specifications are too detailed. At most, give
510	overarching performance goals. For the time-scales and cost considered here,
511	some of these rules are too specific.
512	• Consider not specifying if the energy conversion device needs to be integrated
513	with the AUV, leave it open to the teams.
514	• Teams need to choose those trade-offs between payload capability and size
515	themselves.
516	• Set a maximum volume or weight, but no reason to set a minimum. Need clarity
517	here in rules.
518	• Consider describing payload requirements in terms of power, not sensors or ports.
519	• What are the required instruments/systems for a vehicle? Which ones should be supplied
520	to competitors and which should they source themselves?
521	• Could a bare bones AUV be provided and let teams build a WEC to integrate into
522	it? Providing a standard platform to all teams would allow teams to focus on
523	energy conversion (buoyancy, location information, etc.).

524	• One problem with this is the requirements of WEC designs, systems that people
525	might design might not work with the provided platform. Don't want to limit
526	creativity.
527 528	• Is there a reason this needs to be an AUV, as opposed to a buoy or drifter? Could
528 520	be integrated later down the line. An AUV may be too complicated for this
529	timeline.
530	• What sensors or instruments should comprise the payload package?
531	• Depends on the mission - for invasive species monitoring, it would be needed to
532	have a monitoring package on board. If the mission doesn't matter for this stage
533	of the competition, then instrumentation is not as important.
534	• Recommended that there are metrics for each mission, let competitors determine
535 526	the hardware/sensors they want to use in order to successfully complete the
536	mission.
537 538	• Having a camera on board does not provide evidence that a vehicle can complete a mission.
539	• CTD should be involved. Video camera not necessary - many other sensors can
540	get at the same information (acoustics, etc.). Consider both the test environment
541	capabilities and at sea testing for sensing requirements.
542	• Consider defining metrics (X payload, Y power, survivability) instead of
543	requiring certain instrumentation.
544	• Instrumentation is driven by the mission.
545	• Payload could be a 'spy' to provide metrics for evaluation, instead of relying on
546	participant data to evaluate efficiency of their device.
547	• Payload vs. power consumption is affected by time between missions (charging).
548	Describing the mission is key to define these other specifications. It's not strictly
549	a payload issue, but a time-sensitive issue.
550	• Not all CTDs or installations of CTDs are created equal. It might be good to have
551	a check for accuracy of data.
552	• A minimum payload is ideal, with flexibility - if a device has capacity to swap out
553	sensors to compete in all 3 missions, that should definitely be rewarded.
554	Suggestion to have a competition with separate missions, and that a general
555	device that can successfully compete in multiple missions would score higher.
556	• Dummy power sinks help to understand power production capabilities of WECs.
557	The WEC design is enough of an undertaking, without emphasizing all the
558	integration / sensing aspects of instrumentation.
559	• Still imagery is a critical component (especially thinking about Great Lakes
560	mission).
561	• Consider integrating something standard like a YSI sonde - but it might not be
562	what you would use in all missions (inductive vs. conductive). A standard sensor
563	suite helps with standard data and power requirements.
564	 Consider a more standard oceanographic CTD, like Seabird. Need to recover were height on part of WEC operations and data collection.
565 566	 Need to measure wave height as part of WEC operations and data collection. ADCP would be required for hurrisone mission. An integrated IML (on a ping by
566 567	• ADCP would be required for hurricane mission. An integrated IMU (on a ping by ping basic) would also be needed. Power requirements depend on ping rate
567 568	ping basis) would also be needed. Power requirements depend on ping rate. Thinking about the hurricane mission, it would charge pre-storm, record as long
500	minking about the numerate mission, it would charge pre-storm, record as long

560	as possible and dive to sofety. Starm length 2 days as a social of ALWs might
569 570	as possible, and dive to safety. Storm length ~3 days, so a series of AUVs might
570 571	 be required. Recommended that operational guidelines at the national level be followed/
572	• Recommended that operational guidelines at the national level be followed/ implemented for AUV requirements - don't need to reinvent the wheel.
572 573	1 1
	• Payload could be used for independent validation of energy conversion
574	capabilities. Provide power needs of instrument.
575	• What instruments should be required for each vehicle?
576	• CTD is the most basic instrument, should be required to collect mission
577	information (for hurricane mission, temperature is necessary). Having a CTD
578	makes a lot of sense, but specifying other instruments or types could lead to some
579	gaming the systems.
580	• Restricting requirements for payload will allow for focus on wave energy
581	conversion.
582	• The risk in adding requirements is adding other skill sets to the team. People will
583	need to divide their time and talents - to enable integration of sensors, data
584	processing, etc. Having a payload at all is just a demonstration that sensors could
585	be powered on the vehicle. Propulsion is also a huge power draw.
586	• What you do with a payload depends on the mission. Definitions shouldn't be so
587	stringent to disqualify teams that might not have as much sensor/integration
588	expertise.
589	• What instruments should be supplied by the prize administration team? Which ones
590	should competitors be expected to acquire?
591	• Think about it from a point-scoring perspective. If you can host X payload (or
592	dummy payload) for Y time, you get Z points (or a fraction if you can't
593	demonstrate mission completion)
594	• Price is a consideration - are we going to buy CTDs for all companies?
595	• Consider providing the AUV portion - the autonomy work + the energy
596	conversion is a heavy lift.
597	• Consider providing a CTD with a separate power source for collecting mission
598	information.
599	• If the intent is to have a single integrated WEC and AUV device, then we can't
600	really provide a base AUV since the shape and other features would change with
601	integration. A charging base WEC sounds like a completely different competition.
602	We need to decide if we're focusing on autonomy, or energy conversion.
603	• It's not realistic to design a WEC, integrate, and a custom AUV given the time
604	and money available.
605	• We cannot define the shape of the AUV - this is too limiting.
606	• We don't want to limit ideas/creativity with a standard package, but we also want
607	some control over standard payload (modular approach) to plan for future
608	commercial developments (separating out vehicle and sensor package).
609	Recommended a small instrument package for us to collect basic data on ocean
610	obs.
611	 Agreeing on a CTD package would help to establish a baseline. Should CTD
612	package be required, but with the door left open for teams that want to do their
613	own thing (with required specs).
614	 Require proof of simple telemetry (e.g. line of sight RF)
	- Require proof of simple telementy (e.g. file of sight Rf)

615	• Echosounder would be required for ice sheet - but not at all for hurricane. Are any
616	acoustics required?
617	• Need to decide: do we want flexible devices that can complete any of the 3
618	missions, or a general device that can handle dummy payloads and basic actions?
619	• Recommended providing specifications instead of providing packages. Consider
620	liability if instrument were to fail.
621	• Avoid precluding something truly innovative (that we haven't even thought of
622	yet).
623	• CTD would be easy to pre-determine, but other sensors (like ADCP) would be
624	harder to specify because they have a larger impact on the AUV shape/size.
625	• What are the integration issues with the required sensors?
626	• Consider quality of data collection - such that measurements are not affected by
627	device operations.
628	• Could be validated by CTD measurements.
629	• What is the best way to wirelessly transmit the data back to shore?
630	• Depends on where you are testing. Wireless/4G if nearshore, satellite if far away.
631	Need to decide if you want real-time data transmission or if a logger on board is
632	sufficient. Again, it comes back down to the missions described (hurricanes, ice
633	shelf would definitely need satellite data).
634	 Consider data processing onboard (general comment for AUVs).
635	 Commercial solutions exist. Don't put too much thought into this.
636	 Water quality data is essential in real time, but imagery could be recovered later.
637	 General Comments:
638	• Think about focusing on wave energy converter design and a path to integration
639	with AUVs on paper. Especially considering the funding available - we want to
640	focus resources.
641	
642	 For basic autonomy, this is doable but for more advanced autonomy it could be more difficult.
643	
644 644	 Most competitors won't be starting completely from scratch. Timeline and funding score a little limiting approxially between the design build
645	• Timeline and funding seem a little limiting, especially between the design - build
	phase if intermediate awards are small.
646 647	 Money would be better spent with larger prizes Using WEC partian of degian as degling station (not integrated with AUV)
647	• Using WEC portion of design as docking station (not integrated with AUV)
648	doesn't work with the described missions. Focus on self-contained, single
649	package. Those two routes aren't comparable for evaluation in the same
650	competition, it can't be left open to the competitors.
651	• If the goal is operational use (power generation), then standardization is
652	necessary. If everything is custom, it is harder to modularize. Establish minimum
653	baselines, but leave the rest to the teams.
654	• The energy conversion capabilities are the most critical component of this - but
655	there still has to be room for a useful payload (that can be demonstrated).
656	• Need a way to measure efficiency of wave energy collection, collect data to assess
657	wave/vehicle interactions and conversion rate. Health monitoring of the vehicle +
658	environmental measurements. E.g. wave height, period (available energy), vehicle
659	attitude, energy input and output.
660	• Depth measurement (wave energy diminishes with depth)

661	• Having a CTD on board is recommended, providing a general baseline.	
662	 Consider manufacturers other than Seabird in rules document 	
663	• Question: is the goal to be the most efficient wave energy converter, or to perfo	orm
664	the best on the defined mission?	
665	 Commercial industry is driving towards lower power needs, thus the focus is or 	n
666	conversion efficiency.	
667	• Tracking wave environment on board device may be contradictory to mission	
668	goals. Perhaps some of this data should be provided ahead of time (wave spectr	
669	data) to every competitor, to level the playing field and understand ground truth	n
670	for comparability/evaluative purposes.	
671	 Current profile should also be provided 	
672	• Lots of agreement that wave data for a location does not need to be collected or	n
673	board test device, especially if data already exists	
674	• Consider collecting percent uptime (since instrumentation will likely vary by	
675	mission) to evaluate wave energy conversion efficiency, focusing on continuou	IS
676	data collection instead of mission length or time.	
677	• If the focus of the contest is power generation, then we should focus on that.	
678	Adding instruments and payload requirements will only distract the objective a	nd
679	exponentially complicated the design.	
680	• In the long term, we need to develop modular and standardized payload packag	ges
681	(WEC and/or instruments). We should be able to swap them on the fly for	
682	different application/vehicles.	
683	• Instead of requiring a payload, we should require the competitors to demonstrat	te
684	level of power output. Perhaps we should also provide the competitors with a	
685	standard instrument package to collect performance data that will be used for	
686	independent verification.	
687		
688	Navigation and Communications	
689		
690	Summary	
691	Apart from scientific or mission-specific instruments and sensors, this breakout session was	
692	focused on systems to support the navigation, control, and communications of the vehicle. We	;
693	were interested in eliciting feedback from the participants as to the minimum or optimum	
694	hardware that should be required for the competitors to successfully complete the Challenge	
695	objectives and what hardware- if any- should be supplied due to cost or complication.	
()(

696

697 There were strong opinions from the participants regarding level of autonomy and overall

698 simplification- favoring less emphasis on autonomy and simpler challenges for assessing the

- 699 vehicle's navigational performance. However, the participants seemed to agree that autonomy 700 and navigation could be a bonus points category. In addition, a common message we heard
- 700 and havigation could be a bonus points category. In addition, a common message we neard 701 during the breakout sessions was to leave decisions about what hardware to use to the
- 701 competitors and not mandate them in the official rules. Basically, spell out the challenge in the
- /02 competitors and not mandate them in the official rules. Basically, spell out the challenge in t
- rules and allow the competitors figure out their own approaches.
- 704

705	
706	Notes
707	• How to demonstrate basic autonomous navigation and control of a vehicle without
708	overburdening competitors? This is an energy competition, not an autonomy prize?
709	• for most of mission outlined - Pacific, Arctic; autonomy adds to technology
710	challenge of designing the system. No requirements on autonomy, navigation;
711	would have geo fence/station keeping requirements.
712	• fully autonomous vs. remote control - min reqs/threshold for this challenge?
713	Installing a GPS on a fake payload, acoustic ID system to monitor locations. To
714	do this need Iridium link/cellphone device. 9600xx connection; if Iridium, can we
715	afford telemetry?
716	• Go low tech: surface expression and GPS track. Takes onus off autonomy.
717	Balance - lim to time/budget/scope, emphasis needs to be on energy side of
718	equation. How much time and effort should be spent on autonom. More you ask
719	on autonom/nav, higher the risk the teams won't participate in the energy side.
720	• Don't eliminate due to lack of autonomy. Could admins provide bare-bones AUV
721	they could all work from, all start from same kind of vehicle? Wave energy
722 723	 production part of it may inform if we provide something, may limit creativity? Something more complicated, makes autonomy requirement more difficult. To
724	 Something more complicated, makes autonomy requirement more difficult. To keep autonomy simple, keep path planning simple. Execute waypoints, or series
724	of station keeping functions. Doesn't have to be done dynamically. If dynamic
726	way points, then need comms.
727	 What is the most realistic comms methods to be employed on a vehicle that would be
728	used for the intended mission?
729	• GPS obviously for when surfaced. Some GPS-deprived part, though. Acoustic
730	positioning? Telling the vehicle designer what equip to use vs. what function it
731	should perform. If purpose is to id location for safety vs. comms system on board
732	so vehicle knows where it is in its environ. For energy harvest - former more
733	important. A requirement could be that the vehicle location could be monitored
734	every 30 min within x distance. Could satisfy safety, but not environmental
735	awareness requirement. Where do we land on importance of fully autonomous,
736	environmentally aware vehicle to id potential collisions, path planning. Energy
737	optimized path planning
738	• it is appropriate to give designers widest latitude - want to describe the perf during
739	test and conditions under which test conducted. Relevant to talk about specif
740	comms protocol? Or stipulate they can have comms of a certain type - for safety
741	or performance aspects. More important - prohibiting positioning info.
742	• Safety aspect: anything we should require at minimum? Knowing location? Radio kill
743 744	switch?
744 745	 Robo Sub - their safety was kill switch for motors. To find: positive buoyancy, if contestants fail integrity of hull test in the field, if GPS or other comms
743 746	capabilities.
740	 Initial issues - losing buoyancy would be addressed in pool test, would know
748	before catastrophic failure. Positive buoyancy and simple GPS ping, even if
749	inconsistent, is cheaper and easier way instead of additional comms system with
750	implications for weight/design.
	in provide tot a claire design.

751 •	What should be provided in way of comms for open water portion? Cellular or wi-fi an
752	option given location? Acoustic?
753	• This could inform location selection. Does Iridium make most sense? Rock block
754	system - 50 bytes per packet, could have 1000 packets for \$100. Or more wi-
755	fi/cellular arrangement?
756	• if competition supports sat comms - vehicle designer needs onboard receiver only.
757	gives competition capability of providing uploaded info (dyn or periodic). If
758	competitors want to focus on wave energy harvest, maybe competitors just have
759	receiver onboard.
760	• acoustic navigation aides - if we want them to have this ability but not spend
761	time/money on infrastructure, then competition needs to not stipulate or needs to
762	provide this. Provide transponders for acoustic nav system and they have
763	transceiver. Do admin want to spend money on this infrastructure or not? External
764	infrastructure off of vehicle - who provides?
765	• Would optical methods for pool test be useful? If using optical for comms or nav,
766	still need offboard infrastructure. Depends on where do you want developer to
767	spend time and money in developing a working vehicle. How much info/what
768	kind on vehicle vs. how much time vehicle developer expends in supporting those
769	comms? If all sat/optical/acoustic/sensors - a lot of gear that needs to be powered.
770 •	Should users be allowed to send commands or information to the vehicle during testing?
771	• Full control: proxy for remote control. Should they be able to have full control
772	over vehicle or only interact with vehicle for exceptional cases?
773	• When competitors get to robo subcompetition - tether vehicle to check sensors,
774	autonomy. Having ability to recover vehicle might have some advantage, if they
775	could later untether and go autonomous could be a benefit. Might want to allow
776	either or both.
777	• Could vehicle be tethered in initial stages, and demonstrate autonomy later
778 •	How to demonstrate basic autonomous navigation and control of a vehicle without
779	overburdening competitors? This is an energy competition, not an autonomy prize
780	• Navigation and comms tied in together, based on freq you want data from
781	platform, should be allowed to talk to instrum/platform. Frequency is
782	symmetrical. Should be up to designers.
783	• These criteria should be determined by user functionality. As energy engineer -
784	what is the load I'm going to have to meet and from there, make sure power and
785	energy sys meet that load. Nav and comms, with AI involved, probably best to get
786	requirements from users.
787 •	If we leave comm thresholds to the end user should there be a limit to that? Remote
788	control vs. autonomous control?
789	• challenges in autonomous systems, trying to demonstrate systems powered
790	through wave energy is the goal, too complicated to also ask for autonomy? How
791	much do we require/help competitors in this area?
792	\circ a lot of levels of autonomy. On basic level, mission planning (instead of auton),
793	not all vehicles are truly autonomous. Ability to put out weigh points, GPS
794	coords, where the vehicle can drive to, can set altitude or depth. Vehicle can drive
795	to coords. With telemetry, know where vehicle is, give it flight mode command to

796	execute mission or stop and surface for retrieval. That is imp for control system
797	like this.
798	• how ties back to the power reqs - if competition about integration of wave energy
799	for power requirements - imp of making it focus on that wave energy recharging
800	rather than dev sensors/auton systems. Need associated power requirementheart
801	of competition, more wave power, more advanced actions. Don't turn into a
802	sensor competition. Focus on wave energy.
803	• What are minimum required navigation instruments/systems for a vehicle? Which ones
803	should be supplied to competitors and which should they source themselves?
805	• can it meet the mission or not? Ice shelf vs. hurricane determines these reqs.
806	Needs to be minimalist but more focused on the mission reqs so whole system can
807	meet these reqs. Vs. one type of nav versus another.
808	• why would we want to include a DVL? If an ice system - looking at pack ice, an
809	obvious concern. Considering trial environment - as far as open water/pool
810	scenario, does Dopplar/DVL make sense?
811	\circ yes, in shallow water. They're super expensive, fairly short range, 12m or so
812	depends on model, tracking range not high. Best navigation for shallow water.
813	GPS lock on surface, bottom lock on DVL. positional error from DVL, 1% or less
814	of your movement.
815	• for short sprints under water - 10s of m range: sig advantage in DVL? From dead
816	reckoning and INS, high speed, yes, underwater vehicles, move slowly. Like
817	gyros on subs? INUs and INSs for drones - not accurate enough to dead reckon.
818	I.e. bluefin sandshark - 2m vehicle, doesn't has DVL, just dead reckons - not
819	accurate. Without a DVL, positional accuracy is not very good.
820	 What is the best wireless communication method for the vehicles at the two test
821	environments?
822	• Acoustic positioning? DVL? Dead reckoning? Depends on what the mission will
823	be and how you employ capabilities. Depends on competition objective/theme.
824	• In a pool scenario, submerged nav several meters, maneuver through gate and
825	return home: acoustic posit could be impacted by type of tank you use. Sharp
826	edges, corners - maybe acoustic is right way to go. It depends. Depends on
827	characteristics of the tanks.
828	 left open unless there's a specific user req that NOAA needs long term, or spec
829	req for test facility.
830	• want to realistically frame trials that will be scored. If req a spec device by proxy
831	- DVL or otherwise and if expensive, base it into challenge and need to provide it
832	(due to expense) or workaround so we don't need expensive piece of equip.
833	• Should we reward autonomy?
834	• if autonomy and accurate nav are a function of power available, they should be
835	rewarded, better you can recharge, more auton you can be for any particular
835	mission. Want to reward to be able to charge higher to be more autonomous and
830	
	accurate.
838	• What is the most realistic comms methods to be employed on a vehicle that would be
839	used for the intended mission?
840	• satellite comms. It may be req depending on mission. Also depending on mission,
841	frequency you use will depend - for EHF prob won't work for hurricane mission,

842	but higher freq might work, point to point or satellites. Dep on mission. Affects
843	transmitter, receiver size. Iridium is SHF - affects tran - not a lot of satellites at
844	high latitudes for ice missions. Frequency det by mission and what's available.
845	Will also determine size of transceiver.
846	• Iridium in Arctic, blackout area at high latitudes, but for most parts, satellites
847	orbited.
848	• Tropical storm scenario - satellite comms blackouts? Maybe freq dependencies on
849	cloud blockage. For trials: could have storm during trial, would need to let
850	participants know they need to prep a contingency.
851	• Should users be allowed to send commands or information to the vehicle during testing?
852	• minimal operator interface as goal - esp for hurricane, ice shelf
853	applications/missions. Invasive species could have more operator interaction with
854	the vehicle, still line of sight issues, weather issues that could impact.
855	• set a bare minimum req of vehicle is untethered, other than that, if they want to
856	use some RF direction/remote control, ok for competition. Awarded more points
857	for more advanced autonomy. As bare min to entry, make as low as poss.
858	• min level of autonomy - avoid some obstacle they don't know much about ahead
859	of time, maybe in pool course. Could tie into safety Qs of AUV as well.
860	• Should the vehicle be tethered?
861	• If energy harvesting is goal, min reqs for nav/comms. Allow them to tow
862	antennae, or incorporate scoring mechanism that encourages less constant comms,
863	great but point is energy harvest. Reducing these reqs is key. Ultimately goal is to
864	demonstrate energy harvesting. Key concept - what is energy conversion metric?
865	Key grading criteria.
866	• What would generate public interest/engagement?
867	\circ From admin side, renewable energy is hot topic, try to find existing capability -
868	tethered buoy that operates via solar and show it could be powered by wave
869	energy for example. Practical challenge. Sea buoy for mariners? Benchmark to
870	show future utility.
871	• What are minimum required navigation instruments/systems for a vehicle?
872	• to what degree would you expect the vehicle to come to the surface and
873	submerge? From an energy perspective - optimized to operate beneath the surface.
874	Do you have access to GPS or not? And at what rate? Nav on an AUV is \$50K-
875	\$125K. Cheaper options would cause drift, to go around buoy could use acoustic
876	ping
877	• For the pool test: GPS deprived, underwater completely or surface indoors, you
878	don't have access to GPS, nav from 10m - 90 deg. Turn, go through gates,
879	vision?, returning back 10 m: could this be reasonably exp from an INS with
880	filtering and such? Reasonably priced, not aerospace apps.
881	• Are we using pool test to verify systems work or as way to prep for open sea
882	trials? Additional cost factors? Don't want to build twice, want what you build in
883	pool to be applicable to other parts of competition. Think like a fish: if you were
884	doing a pool test to verify before sea trial, need forward looking acoustic system
885	for active avoidance of obstacles. Need to get initial fix from sea surface. What's
886	surface/submerge rate, tied to comms plan, any time you resurface, you should

887 888 889 890 891 892 893 894	 have ability to take a fix for where you are, nav system should be able to hold on to it and move it. Active pingers to bounce between things. Would it be possible for test facility for pool and at sea to have surface platform that AUV could comm with? And it could give it things to help navigate, making pool and sea similar? Could also take care of data relay to satellite sys, power requirements get high with more data. If instead AUV relays data to single float, float does data transmission, this standardizes a bit among AUVs. Mission objective data to be sent back to add to realism in open ocean trial.
895 •	How should station keeping be demonstrated, if at all?
896	• Given limited resources - instead of demonstrating, have teams describe how
897	proposed tech wouldn't hinder/would reduce drift in nav. Describe benefits to nav
898	and comms. To do a demonstration of this would be extremely expensive and
899	would spend no money on energy harvesting as a result. Describing might be
900	more useful than demo.
901	• what should we provide/prescribe as competition administrator? Set GPS coords
902	to that point and provide acoustic pinger to home in on the acoustics, beacon, GPS
903	coord.
904	• balance power generation by power expended. Incentivize low drag systems,
905	don't impede vehicles locomotion.
906 ●	How can the Prize Administration team assist with vehicle navigation (make it easier for
907	contestants)?
908 909	• Spectrum from full autonomy to remote control: how much autonomy should we
909 910	expect, should we reward extra autonomy? Either deploying data bubble or come up and do same thing from vehicle. What is tank test supposed to represent? If
910 911	goal is to show navig. From point to the next, in tank, can do this optically with a
912	laser.
913	 Goal with trial is to submerge, do a simple maneuver and return to base. Given
914	resources and times - have team write what they would do in the future and focus
915	on what matters: energy harvesting. In tank testing is very expensive, and could
916	spend purse on just this.
917	• Lean toward min nav and comms reqs on the vehicle. Can be solved by AUV
918	designers, not intent of competition. Minimize this. INS or optical track follower
919	for pool test. Doesn't translate to open ocean test. Minimal is better.
920 •	Appears to be interest in the idea that the contest should focus on AUVs capabilities to
921	harvest energy. What could you have as a min system? Should we standardize equip we
922	provide to competitors? What are the key questions to minimize challenge of comms and
923	nav?
924	\circ For open ocean test: focus more on station keeping req; award points for distance
925	traveled away from that point. Rather than a nav req, traveling from point A to
926	point B; leave point A and come back to point A.
927 •	Point 1 regarding using RS-232 is not clear. What purpose should it be used for? What
928	physical interfaces?
929 •	Point 4 regarding underwater navigation appears to be adding onerous competition
930	requirements that are not related to the core innovations of the teams or to the goals of the
931	competition. If the rules require teams to duplicate or integrate available navigation
932	technology then this reduces effort that can be made on innovations in energy generation.

- 933 Realistically if we make a new energy generation system then the commercialization of 934 this will be done by marrying it with an existing AUV manufacturer that already has 935 navigation solutions available. If teams are forced to integrate navigation now it reduces 936 the quality of the energy generation (the main point of the competition) and so reduces the changes of commercialization of the energy generation technology. We strongly feel 937 938 that integrating a navigation requirement in the DEVELOP competition is a major 939 deviation from the project goals. Adding navigation will reduce the effort that we can 940 invest in the energy generation aspect of the competition, this in turn diminishes the 941 impact on the goals of "Generate sufficient power from co-located marine resources" and "Accelerate commercialization of marine energy systems".
- 942
- 943

Power and Energy 944

945

946 Summary

947 Focusing on wave energy likely makes sense for being able to judge and test devices, though this 948 constraint may limit creativity. Choosing a precise battery to provide contestants seems

949 unnecessary, though benchmarking the onboard battery capacity is necessary. The method of

- 950 judging the power output was discussed alongside the battery restrictions. Participants
- 951 questioned the usefulness, fairness, costs, and safety risks of at sea tests and emphasized the
- 952 capabilities present at wave tanks.
- 953

954 Notes

955 Is wave energy the right resource to use here? TAKE-AWAY: There was no true convergence on a "yes" or "no". Some thought 956 that limiting the resource limits creativity, but makes metrics much harder (though 957 958 there were some thoughts on how to measure success in a resource-agnostic way). 959 Some thought that because wave is the most energy-dense resource (is it?) that it should just be wave. Some thought that the focus should only be on the wave 960 961 energy conversion piece - so competitors would only apply their WEC to an AUV 962 theoretically. 963 Specifying resource can limit creativity, suggested a "do not use" list instead of a 0 964 "use-only list" of resources But: if the resource is not specified, can we choose a test site? 965 966 Would need to monitor the test sites as the test is running so we know 967 what the resources are 968 • Workaround might be devices that can harvest multiple resource (e.g. both wave 969 and current) 970 • Consider using efficiency metrics to score contestants 971 • Consider having different testing sites if we allow multiple resources 972 No existing solutions for AUV power generation from the environment - except 0 973 solar-powered wave gliders 974 ■ Focus on highest energy density - which would lead to waves - but: might 975 need high surface area to actually harness that wave energy 976 Suggestion: focus on wave energy and then tailor that to the size of 977 the system, which would depend on the intended purpose

978	 Leave design space open and then let engineers make tradeoffs
979	during the building process
980	• Focus on novel methods to pull energy from the ocean, and then
981	ask participants to think about how this would transfer to practice
982	 Metric: could benchmark generation by comparing the same
983	surface area to what solar or wind would be able to generate
984	• Need to determine which resources are available at the test site: including other
985	renewable energy sources. Particular missions being targeted are not likely to
986	have other renewable energy sources available.
987	■ There are tradeoffs - but within existing AUVs: how can wave energy be
988	integrated into these existing geometries? Rather than coming up with a
989	brand new AUV
990	• Wave energy is the novel opportunity here - start with that, and then determine if
991	they are applicable to AUVs
992	• Unrealistic to only look at WECs - will only operate within certain parameters.
993	Issue: only a small fraction of the power generated can be integrated into the
994	system.
995	■ Solution: allow competitors to make up for smaller amounts of generated
996	power (in theory)
997	Metric: how much charge can be put into a battery
998	• Metrics: can be tied to battery charging and discharging, or can be tied to the
999	mission
1000	 Useful to baseline how much energy is theoretically available in the
1001	environment - so you can determine how much of the energy was actually
1002	harvested, and what are the losses - what's the % of the wave that makes it
1003	into the battery
1004	Tying it to the mission brings in a bunch of other variables - some of
1005	which are already being optimized by commercial sector
1006	• Required total energy of a mission is the driver or metric to focus
1007	on
1008	• Also: suggestion to tie it to the mission
1009	 This is the end goal anyway
1010	This could encourage cheaper systems that can do the job a little more
1011	effectively - even if the power generation isn't at the highest efficiency
1012	• Metrics focused only on power generation doesn't tell us anything
1013	about what missions could be completed
1014	• Need to at least ask competitors to describe the mission they would
1015	be able to fulfill to get at this - but might be too expensive to
1016	actually test
1017	Theoretical energy in a wave - is not tied to being at the surface
	• If the intent is to make a general AUV/WEC rather than a mission specific one,
	then it makes sense to to have multiple sea trials in very different environments.
	Perhaps the contestants could be allowed to swap out certain components in
	between these trials to better suit the trial at hand.

1018	 In case you aren't familiar - the Navy also has a very exquisite wave generation tank capability at NSWC Carderock in Maryland. This would be a very useful test environment as you can generate your own prescribed environment. Should a standard battery pack be required or should competitors be allowed to choose
1019	their own?
1020	• TAKEAWAY: no clear answer. One participant mentioned they had luck
1021	allowing competitors to choose their own. Many suggested metrics and agreed
1022	that baselining the battery would be necessary.
1023	• A better metric is power delivered to payload instead of monitoring battery
1024	• Vehicle design matters since it will affect energy use, maybe we can look into
1025	other metrics such as mission time
1026	• Another goal is how long the device keeps recording data
1027	• Compare the differences of uses and related power usage
1028	• There should be a baseline
1029	• Low-end car battery range: 1 -5 kWh
1030	• There have been successes in allowing competitors to choose their own batteries -
1031	need to think of some safety questions
1032	■ Factors: capacity and duty cycle - these are dependent on the mission
1033	(trickle charge vs full recharge)
1034	 Also need to define the payload - in addition to the suite of basic sensors,
1035	defining the mission-specific payload would be very helpful from the
1036	competitors' point of view
1037	• if a standard battery is decided then some other variables should also be specified
1038	to focus innovations on the desired outcome e.g. define the payload, speed,
1039	duration and you'll get the best use of size & weight to harvest wave energy
1040	• Different batteries work at different voltages. Different batteries handle energy
1041	and power/current differently. Therefore it is very easy to generate power that is
1042	at a bad voltage/current. This bad voltage/current will require extra power
1043	electronics to effectively harvest
1044	• What is the standard battery capacity to be provided to competitors?
1045	• TAKEAWAY: no clear answer. Could have a metric about time to full charge
1046	rather than specifying the capacity.
1047	• Depends on vehicle size, speed, payload, weight, and duration
1048	• 1- 50 W charging for battery
1049	■ Seems to be too small
1050	• Could provide small batteries and allow contestants to use multiple
1051	■ There has to be a threshold
1052	■ Influenced by instruments on the device
1053	• Metric to consider: how long does it take for the vehicle to charge the battery
1054	• What type/chemistry of battery (Li-Ion, Lead acid, etc.) should be used?
1055	• TAKEAWAY: Lithium presents safety concerns but are more standard.
1056	• Lead acid have a better temperature range, lithium are more standard
1057	 If different batteries allowed it will be hard to assess Taking into account any incommental sofety perspective
1058	• Taking into account environmental safety perspective
1059 1060	 Lead acid batteries in the water are bad, some other batteries can overheat and leak
1000	anu itak

1061	• Recommend staying away from Li-polymer for safety, there were fires from
1062	shorts or overdrawn currents
1063 •	Should exact battery make/model/capacity be specified, or just specify the max capacity
1064	and let competitors source the battery themselves
1065	• TAKEAWAY: no clear answer. Arguments made for each option.
1066	• Specifying batteries gives standardization- but it limits the scope of the design
1067	• Depends on the mission profile, duty cycles
1068	• The specific missions identified should have an associated "power budget" and
1069	"recharge intervals" that the wave energy components integrated with the AUV
1070	are required to address. Then other missions with similarly high power budgets
1071	can be addressed as part of a larger scale commercial roll out.
1072 •	What is a realistic expectation for continuous power output from a wave energy converter
1073	of this size? Is 80 kg weight limit too restrictive?
1074	• TAKEAWAY: 80 kg seems okay - but no real convergence. Semi unrelated, but
1075	there is a piece in the rules doc about a 1 W continuous power outage, and
1076	someone noted that this should either be average instead of continuous or
1077	removed completely, as the power output would be different with different
1078	charging scenarios
1079	• Minimum mass required for 10-50 W capacity (regardless of vehicle shape):
1080	■ 30 kg seems realistic (within an order of magnitude) for 50 W
1081	 15-20 kg seems realistic for a smaller wattage
1082	• Also need to define what piece of the device will count towards the weight
1083	 80 kg may be too aggressive (light) for higher power range
1084	• 80kg displacement, 2.5m length and 1W power are compatible and consistent
1085	requirements, meaning that a 2.5m long 80kg AUV can be made to generate >1W.
1086	• Specify dry mass
1087	• It can be set to weight limit for the crane
1088	• While harvesting, it is assumed that the devices will be on the surface
1089	 50 W for 30 kg seems doable
1090	• Needs a reference to react against
1091	• If we require continuous power - 1 W was used as an example - this might be
1092	unrealistic
1093	 But: average power continuous would be more appropriate
1094 •	What is a realistic test length? What would demonstrate that there is viability in the
1095	prototypes? 3 days? One week? One month? A fixed number of charge/discharge cycles?
1096	• TAKEAWAY: most people agreed that having a tank test first is the best route to
1097	take. It might be useful to split up metrics between tank and open water - from our
1098	brief conversation, this seems like it was echoed across breakout groups. Some
1099	thought that an at-sea test wouldn't be necessary.
1100	• It will come down to cost, it will have to be in the order of days
1101	• Depending on the duty cycle
1102	• Wave resource changes over time - everyone needs to be in the water at the same
1103	time
1104	 Or factor in this change in metrics
1105	• Logistic footprint will go up depending on the number of competitors
1106	• Stage testings:

1107	■ First stage in a wave tank for standard testing (power and vehicle viability)
1108	Second is open water
1109	• Use cases were all longer duration - but cost will be the limiting factor
1110	 Likely to be in the "days" range due to funding
1111	• Option: downscale a realistic test scenario to fit in a shorter amount of time
1112	• Consider: wave conditions - which change from day to day - will require that all
1113	contestants test concurrently
1114	 Or need to factor that into the scoring
1115	 Or could use a wave test tank for consistent conditions
1116	• This could be the first test of two (the second being an at-sea
1117	deployment)
1118	• Score different so stage one focuses on power generation and other
1119	metrics that need to be compared side-by-side
1120	• Use the second stage to score other metrics that don't require a
1121	side-by-side
1122	 Could use for con-ops testing and fit to NOAA mission
1123	rather than mapping performance over different sea states,
1124	but focusing on the applicability of the device to scientific
1125	missions
1126	• Initial test at Carderock - would test waterproofness, but also
1127	ensure that devices don't break during the in-water testing
1128	• Participant noted that Carderock would be an ideal testing
1129	site because the wave conditions are controllable and
1130	multiple competitors could test simultaneously
1131	• Could argue that at-sea test isn't really useful - may not be able to
1132	build the WEC and integrate it into the AUV within a reasonable
1133	amount of time and money
1134	• Tank testing reduces complexity and allows the focus to be on the
1135	wave energy conversion piece - can also be better baselined in a
1136	tank where conditions are more controllable
1137	• Also reduces the risk of losing the hardware at sea because
1138	a tank can be shut down as soon as something starts to fail -
1139	reduces cost and loss of work
1140	• Consider: logistic footprint increases with number of contestants and time at sea -
1141	need to define realistic boundaries
1142	• Metric: could consider how much energy is going into the environment
1143	(propulsion) and use that as a denominator
1144	Test facility - ideal if it can demonstrate a variety of sea states
	• What is the minimum ocean energy resource (likely wave) required? What is the least
1146	efficient and most efficient design archetype at small scales? Assume worst efficiency for
1147	sake of site selection for testing
1148	• TAKEAWAY: need to be accessible by boat and extreme sea survivability should
1149	not be the focus
1150	• Any place we test should be accessible by small boat - safety and practicality
1151	 Survivability in extreme seas shouldn't be the focus

1152	• There has been some testing in Lake Washington - where waves were ephemeral
1153	(balance between accessibility and wave resource)
1154	• Test sites should be accessible by boats for practicality
1155	\circ <30 m deep
1156	• Weigh the access to site and presence of wave energy
1157	• What is the temporal variability in the ocean energy resource at suitable test locations
1158	(somewhat sheltered, coastal shallow-water sites near infrastructure) and does that agree
1159	with the deployment duration? For example, if sufficient wave resource is only available
1160	one day a week, can we realistically expect the vehicle to survive six days?
1161	• TAKEAWAY: find a location that is unlikely to have surprise rough sea states
1162	\circ Rather than looking for a location with the waves you do want - look for a place
1163	that doesn't have wave you don't want
1164	• Need to pick a place that isn't likely to have a surprise wave that damages the
1165	device before survivability has been fully tested
1166	• Does the energy harvesting source have to be located within the vehicle?
1167	• TAKEAWAY: lots of thoughts here - no convergence. Arguments for both sides.
1168	• Functionally - is there a difference? From a mission capability standpoint, it might
1169	not matter
1170	• Is there utility in inventing an entirely new vehicle class? Instead - focus on two
1171	technologies that already exist and make them work together (i.e. keep them
1172	decoupled)
1173	■ If the recharge station is nearby then it doesn't matter
1174	• Example: mission under an ice shelf - integration of the power harvesting
1175	onboard, you get longer range at faster speeds that what a thermal glider would
1176	provide.
1177	• Con: power device might be unwieldy and affect vehicle performance
1178	• Vehicle could also tow a WEC
1179	• This is important so it has to be declared to be included within the vehicle
1180	 Does the mission require that the device be incorporated? Will depend on type of mission
1181	• Will depend on type of mission
1182	• How to measure power output/charging? What about sensor drift and recalibration?
1183 1184	Redundancy in measurement
1184	 TAKEAWAY: should have a standards assessment package Recommend: standard assessment package - some IO channels that are attached
1185	1 0
1180	to device before testing
1187	 It should measure time to charge Mechanical vs electrical: it would be difficult to measure mechanical power -
1188	kinematics (tension in the line?) - would be difficult to measure in a standardized
1189	way, and could potentially be limiting in that it depends on the geometry of the
1190	WEC
1191	 Device may be small enough for a rig to built to assess onshore to give
1192	bevice may be small chough for a rig to built to assess onshore to give baseline measurements - that is, providing power on shore from a
1193	controlled source and monitoring battery charge
1194	 Sensor drift/recalibration: if the devices were small enough, you could build a rig
1195	to calibrate on shore to measure electrical signals on board
1170	to canonate on shore to measure electrical signals on board

1197	• Power emulator on shore to plug into battery on shore - should at least provide a
1198	baseline
1199	 Some national labs have measurement platforms provide a standardized
1200	assessment package
1201	• How quick to charge the battery
1202	• How to ensure equal playing field (i.e., prevent cheating) on battery capacity? Is a battery
1203	pre-test or verification necessary?
1204	• TAKEAWAY: yes, and administrators could "look under the hood" to ensure
1205	there aren't additional hidden batteries.
1206	• Yes, this should be tested
1207	• Open question: does it matter if the battery is provided or not?
1208	• Should there be a phase where the contest admin "look under the hood" of the
1209	device before it goes out to sea?
1210	• Competitors can also self-regulate this - folks will notice if there is a device with
1211	unusual capacity
1212	• Suggestion: decouple the metrics for battery and power production
1213	■ Also could benchmark it with admin there (recharge cycles) and then put it
1214	out - so there is not time to game the system
1215	 Let administrators to look under the hood for hidden batteries
1216	 Battery sniffing dogs- sniff lithium
1217	• Limiting the battery capacity is to encourage multiple repetitions of charge and
1218	discharge cycles
1219	• What about having a system to record the amount of power generated?
1220	• At a certain load, measure charge and discharge rate
1221	• What is the lowest state of charge competitors would be comfortable draining down to?
1222	• TAKEAWAY: this differs depending on competitor strategy and type of battery.
1223	May not be worth defining. One participant mentioned that focusing on the
1224	battery too much will draw attention from the goal (wave energy) to the battery.
1225	There are scenarios where a less "good" battery is worth the cost savings and still
1226	enables a mission.
1227	 Power to load - different WECs may perform better/worse with different energy
1228	storage systems. Thus they cannot be divorced.
1229	 Standardization of battery packs are important
1230	 Depends on type of battery/capacitor for SOC
1231	• May not matter - this could be part of the competitor's strategy
1232	• Also dependent on type of battery - chemistry will dictate the degradation rate and
1233	could actually lead competitors to use a battery that would be best during the
1234	prize, but wouldn't be appropriate for commercial use
1235	• Situation-dependant: focusing on the battery too much might draw attention away
1236	from the actual goal -which is the harvesting system and it's capability to generate
1237	energy
1238	• Battery might have rate of discharge/charging that isn't conducive to the energy
1239	harvesting strategy
1240	 Battery should be secondary and only looked at as a piece of the design
1241	 Would not specify battery pack
	1 7 7 1

1242 1243 1244 1245	 But could specify state of recharging - is it shut down? Are there hotel loads? Does it need to be able to maintain its location? Etc Not necessary to standardize but should ensure the test conditions match operational requirements.
1246	 Depends on battery storage
1247	• Safety restrictions on amperage and voltage?
1248	• TAKEAWAY: this is a major concern - use off the shelf. Need to keep safety of
1249	operators and divers at forefront.
1250	• Context: anything over 50 V requires special training at PNNL
1251	 48 V is a common nominal voltage, but depending upon how it is done,
1252	this may float a little bit above 50V. Agree on COTS AUV safety specs.
1253	 A standard battery / power management systems would be needed to be
1254	able to identify the best solution for integrating wave energy conversion
1255	systems - to avoid a battery competition
1256	• Use commercial off the shelf systems for safety
1257	• Key battery safety standards: UN Transportation testing, DOT shipping
1258	requirements
1259	 Look at safety requirements for current AUVS with divers in the water
1260	• Needs to be grounded - especially if divers are going to come in contact with
1261	them
1262	■ For a device that is floating without touching ground, grounding is
1263	technically impossible.
1264	 Rather than ground: minimize transient currents and static buildup (when
1265	out of water)
1266	, ,
1267	
1268	• Other safety considerations for the competitors or support divers?
1268	 TAKEAWAY: reduce diver interactions as much as possible
1209	 Make sure there is a boat ramp nearby!
1270	 Reduce diver interactions as much as possible - suggest towing instead
1271	 Would also reduce costs!
1273	• We may want a remove lock/unlock for launch/recover/divers
1274	······································
1275	Operations and Safety
1276	
	Summany
1277	<u>Summary</u>
1278	There were different environg on the degree to which exercises and referr should be used as
1279	There were different opinions on the degree to which operations and safety should be used as matrice and stand along goals within the prize. some participants fall strongly that safety and
1280 1281	metrics and stand alone goals within the prizesome participants felt strongly that safety and operations are half the battle for ocean observing and should be scored metrics, others argued
1281	that the prize should remain focused on technology innovation. All participants agreed that
1282	contestants do need to demonstrate in the design phase that they understand safety concerns and
1285	have a plan to mitigate issues. All participants agreed that operational safety was of paramount
1204	have a plan to initigate issues. An participants agreed that operational safety was of paramount

1285 importance to prize activities--our test venue and testing crew need to ensure a safe process.

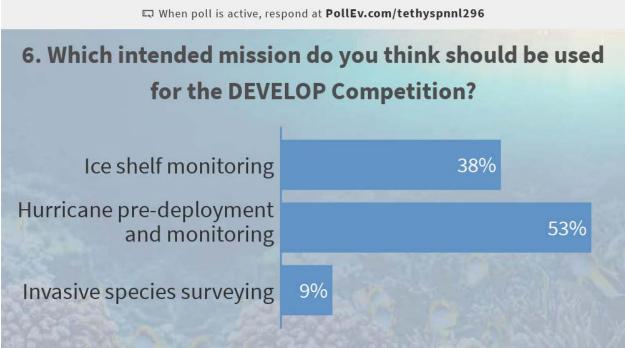
1286	Most participants agreed that we should be less prescriptive in our rules document on specific			
1287	design strategies, and instead simply state the outcome we want to achieve and let contestants			
1288	design to meet that standard. Participants discussed that ideally we'd test basic operational			
1289	strategies in a controlled test site or venue, before going out to sea. Some tests could be done in a			
1290	pool, but others, such as deployment and retrieval, might be better completed in a controlled field			
1291	site, with access to vessels, etc.			
1292				
1292	Notes			
1293				
1294	Initial Thoughta			
1295	Initial Thoughts			
1290	 Anything about the first rule that you would like to comment on, disagree with, etc.? The lift point would have to be above the surface of the water. Clearly visible. 			
1298	• Rather than calling it a "lift point", call it a "lift mechanism". One of the biggest			
1299	challenges is at the launch and recovery phase, so this is a really important			
1300	consideration.			
1300	• In terms of launch and recovery, another important point is people's exposure to			
1302	risks. Shouldn't require someone to hang over the boat, expose them to additional			
1302	hazards, etc.			
1303	• Even if something is handleable, it may not have a desirable recovery method.			
1305	Might not be a device element, but more for the team working on the testing side.			
1305	 Safety shouldn't be afterthought. Should be part of success. 			
1300	• Safety shouldn't be alterthought. Should be part of success.			
1307	Discussion Questions			
1308	• What types of lift points must be specified for the vehicles for at-sea recovery using deck			
1310	machinery (a-frame, davit, etc.)?			
1310	• Regarding the first rule, it depends on the size of the technology.			
1311	 Is there any reason not to have a lift point? We don't have to be so specific for the 			
1312	trim rule, for example, but is there anything that makes this a hassle for			
1313	developers?			
1314	 If a vessel is under a certain weight, a lift point may be unnecessary from 			
1315	the safety side.			
1310				
1317	Smaller vehicles all have a handle, so maybe the wording ("lifting point") needs to be spelled out better.			
1319	• There should be a way to grab the vehicle and support the weightbut why does it			
1317	need to be in a neutrally trimmed orientation? Doesn't seem like a safety issue.			
1320	 Wouldn't want to put someone at a disadvantage if 			
1321	1 6			
1322	 Vehicle must incorporate at least one lifting point, etc. depending on the size, etc. "Neutrally trimmed" issues may not be necessary or depend on 			
1323				
1324	the design of the vehicle.			
	80 kg may not be enough (e.g., OE Buoy) Are the dimensions and wright engenerists? If it was any history would us he			
1326	• Are the dimensions and weight appropriate? If it was any bigger ,would we be			
1327	able to safely deploy and retrieve? Could it be built within the confines of this			
1328	prize?			
1329	■ You couldbut if you're trying to support all entered vehicles with a			
1330	common vessel, that'll dictate what you can facilitate or safely handle.			
1331	 Size, weight, and dimensions seems somewhat inappropriate 			

1332	• A lot of the things being asked for involve programming and autonomy that are
1333	already common to existing systems. So are you asking people to rebuild those?
1334	This prize needs to figure out what areas you want people to innovate on. Build a
1335	system with autonomy or one with energy efficiency?
1336	• Lift points v max length v etc How is the max weight estimated? Has this all
1337	been estimated so the requirements are all consistent?
1338	• Is there a max size and shape that we think we can safely operate in a small scale
1339	social setting (e.g., two people with small A-frame)?
1340	• Yes. Remus $600 = 320 \text{ kg}$ -> not possible for individual to lift; Iver = 38
1341	kg -> possible.
1342	 What restrictions should be placed on vehicle displacement or buoyancy?
1343	• Vehicles should be positively buoyant to ensure that the system fails the vehicle
1344	will at least resurface,
1345	 RoboSub requires vehicles be positively buoyant by at least one half of
1346	one percent (0.5%) of their mass
1347	• Is what we have a sufficient way of capturing the buoyancy question?
1348	The requirement you're after is that someone is able to come and pick up
1349	the device? That's a pretty generic technique. Whether 0.5 kg drop weight
1350	is sufficient is up to the vehicle designer. Maybe leave the specifics to the
1351	designer. Consider a more generic criteria in the rules document.
1352	 If you state the requirement as the function rather than the mechanism,
1353	then you've got every vehicle designer covered.
1354	• Should we be more specific or open about this?
1355	■ Agreed on open.
1356	• Are there any reasons we wouldn't want positive buoyancy?
1357	 May induce greater risk if working under ice.
1358	■ If we go with an arctic use case, we may need to reconsider our recovery
1359	practices.
1360	• For the Great Lakes, it may be better for it to just go to the bottom if you
1361	have a location. Can go get it during summer.
1362	• Should we design the safety and recovery features for the contest or as core
1363	elements of the use case?
1364	 Maybe both. Operate differently during the demo phase than if it were to
1365	be put under ice.
1366	Safety should not be part of the contest. Could compromise safety.
1367	■ If you can't show operational safety, you're essentially disqualified from
1368	the prize.
1369	 Safety is important but on the technology side, it shouldn't be an
1370	important part of the competition since it's all about the technology. Safety
1371	features shouldn't be the core part.
1372	• We could design the prize with a core goal, with a number of subgoals
1373	around that that could be scored and weighted. Could allow people to
1374	optimize designs of one part or another.
1375	 One suggestion could be to get rid of the safety element.
1376	 How do you define safety here? For operators and individuals, that can't
1377	be compromised. Different from safety of technology.
	ce compromised. Enterent nom surery of teemorogy.

1378	 Maybe recovery features shouldn't be one of the requirements.
1379	 Summary: Have to balance safety requirements to make sure we have a
1380	safe contest but not overweight safety at the detriment of the ability to
1381	explore some of the other elements of the prize.
1382	
1383	• What is the industry standard for AUV navigational lights? Is a simple white-light visible
1384	from 360 degrees acceptable? Need to specify brightness or distance visible? Would the
1385	light have to be running during the entire at-sea test?
1386	• The Coast Guard (CG) would probably like the light on continuously and at the
1387	surface, rather than just during recovery.
1387	 1 km is a problematic specification due to visibility conditions. Would be good if
1389	there were CG requirements.
1389	
1390	
	the day? Any longer endurance runs? Can also be difficult to see lights during
1392	daylight
1393	• Has anything else been used other than a light? Maybe a flag?
1394	 Sometimes a low frequency signal.
1395	• Perhaps we can avoid making specific measures Could just say that the vehicle
1396	needs to float to surface if it fails. Don't need to include lights, just make it
1397	identifiable during the day. Maybe better measures for visibility at night?
1398	• Arcodrifter doesn't currently have a lighting/reflector requirement. So does an
1399	object like this actually legally require anything?
1400	 CG Best Practices in drift? They'll want it to be yellow. They'll want the
1401	nav stuff in and ability to detect oncoming vessels. Having yellow color
1402	may be enough given there are no CG requirements yet.
1403	• Are there any methods that work better than others?
1404	Different colors?
1405	 You'd want some sort of reflective material, though biofouling may
1406	diminish this
1407	• Is this based on a Coast Guard standard?
1408	 CG has been conducting interagency comments for a notice of best
1409	practices related to autonomous maritime systems. They are looking at
1410	lighting, collision avoidance, and mandating AIS.
1411	Their only regulations right now are to let them know where and when
1412	you're operating.
1413	
1414	• Should safer designs be rewarded in scoring? How?
1415	• This is a really short list in general. All geared toward vehicle safety, but nothing
1416	towards operator or human safety. Perhaps you could say that you've got enough
1417	redundant systems if something goes wrong.
1418	• May end up with additional comments from lawyers, etc.
1419	• A lot of this is designed around deployment recovery. Some parts of safety are
1420	more boxes to be checked (e.g., not going to expose electrical equipment). As far
1421	as scoring safety, you could award having clearly thought through mission
1422	dependencies, redundancies, etc.
1423	• Good to hear that we can be creative here

1424	• Think about how difficult installation or assembly (e.g., time, # of components, #
1425	of specialty tools) will be. Prize looking at disaster response looked at some WHO
1426	requirements and allowables. Can imagine that many of these devices will be
1427	deployed on or near a beach. Could lose parts in the sand. Maybe other things to
1428	consider if deploying from a vessel (e.g., conditions, platform stability).
1429	• The Coast Guard will want it to be colored yellow if operating in coastal waters.
1430	• Not just a single hole attachment point. Could have another point to attach a guide
1431	line.
1432	• Could be an interesting metric. Testing the safety of lifting and retrieving.
1433	• One of the key metrics in the energy industry is exposure hours for personnel.
1434	How long does it take you on deck with a suspended load or trying to hook it.
1435	Could be a straightforward metric that gives a sense of efficiency.
1436	• Safe/maximum sea states for operations. What sea states can you handle? May be
1437	up to designer. May be up to boat and crew.
1438	• We don't need to reinvent the wheel with these safety and operation
1439	standards/guidelines/etc. For proposal, it could be as simple as the operation plan
1440	referencing that they meet government standards/best practices instead of
1441	dictating what they should/shouldn't do. Could be a scoring element.
1442	• Is there a safety reason/considerations relevant to transport of devices?
1443	Do you think different sized devices could have different safety
1444	challenges?
1445	Do we want to encourage having a device/platform that builds in some of
1446	these safety parameters?
1447	Encouraging different safety metrics with points may be helpful. IF we
1448	can start normalizing some of these requirements (e.g., power per mission
1449	hour), we could incentivize smaller and more inherently safer devices.
1450	• Are you going to have the ability to offer certain bonuses for including certain
1451	design parameters? Could have some sort of bonus prize for the most compact
1452	and easy to handle device/platform
1453	 Waves to Water Prize do have some of these
1454	• What could some of these metrics look like?
1455	• Definitely think ease of use should be incorporated in the metrics as if it isn't easy
1456	to use, it won't become commercial at the end of the process. This includes ease
1457	of handling, ease of setting it up, ease of data download, powering/repowering
1458	and servicing. I was really pleased to hear that mentioned. Also, safety should be
1459	incorporated right from the design stage.
1460 •	Should leak sensors be required? Should particular models of sensors be specified?
1461	• Any real-world experience?
1462	• Best practice may be to not have your device leak and to know if its happening
1463	• From a safety standpoint, you need to know that leaks won't cause safety hazards
1464	(e.g., danger of electric shock).
1465 •	Should vehicles have an external kill-switch (clearly labeled on the vehicle) to stop
1466	vehicle propulsion or deactivate electronics? What should the switch deactivate?
1467	• By the time you identify that somethings gone wrong, wouldn't the battery have
1468	drained by the point a kill switch would be considered? By the time we can
1469	deploy someone out there to hit the switch, this could be useless.

1470	Agreed. If you put a kill switch at the side of an AUV and its speeding
1471	along, the job you want is someone to turn it off and you're putting them
1472	in a risky environment. Design is prompting risk there.
1473	 Someone out there could find and press the kill switch without
1474	authorization.
1475	 You want the test to go well, but for this type of platform, it's small
1476	enough that you probably won't get into a safety issue.
1477	■ Kill switch is actually your process. If you have a good procedure in place,
1478	that's your kill switch.
1479	How do you turn these on and off without a kill switch?
1480	 Probably remotely. No physical switch.
1481	
	• Most have redundant systems. Some have internal fail safe
1482	mechanisms that identify when they're in trouble and cause them
1483	to adjust their ballast and return to the surface. Designers are very
1484	familiar with this.
1485	Being able to deploy and operate the device safely should be the
1486	uncompromised priority of this competition. Safety should be a core value
1487	instead of competing factors. There are government and industry safety
1488	guidelines and best practice that the competitors can follow.
1489	 With that said, the detail requirements should once again be loosen
1490	up and allow for competitor's interpretation. For example, I think
	· · · · ·
1491	we should leave it to the designer to determine if it is necessary for
1492	features like kill-switches or lifting points. Adding a kill-switch
1493	because it is required may add unexpected consequence and
1494	operation challenges to the overall design (water-seal, electronic,
1495	flow dynamic, safety concern, etc).
1496	■ The lack of this should maybe be disqualifying. Is this a value you want to
1497	communicate or a primary goal?
1498	 Maybe phrase this as a functional requirement rather than requiring that
1499	they have a big red button
1500	• What are the minimum infrastructure requirements (if any) to safely deploy and recover
1501	the vehicles:
1502	• From a pool?
1502	
	• From a coastal ocean environment in conditions up to <u>sea state 4</u> ?
1504	• Very important issue but typically dependent on sea state.
1505	• Experience of the crew is very important too.
1506	• I think whatever we decide will guide the dry weight requirement.
1507	\circ If you're looking at 80 kg as your dry weight spec, then in a pool or coastal
1508	environment, you wouldn't need something the size of an a-frame, but something
1509	to lift it. Ability to hoist is necessary but it doesn't need to be big or fancy.
1510	• Who are the people doing it? Competitors? Is there a rule around this?
1511	 Should this be written into the competition?
1512	 For the Waves to Water prize, which will culminate in a live test, we plan
1512	to have certified divers.
1514	So the safer way may be to have a dedicated crew so a competitor isn't
1515	going out there to do this for the first time.


1516	Could be a minimum req for the venue.
1517	This matches what the Navy does when they host their annual technology
1518	demo exercise. The Navy uses its own personnel to handle equipment.
	, , , , , , , , , , , , , , , , , , , ,
1519	 Need to consider ADA considerations
1520	 Having a device that is generically deployable may be better than having a
1521	competitor be the only people knowing how to deploy.
1522	■ If we made it easier to deploy, should it score higher?
1522	
	• What are the emergency communication systems for a vehicle? Should these be required?
1524	• Putting aside emergencies, what kind of communication requirements do we
1525	have?
1526	 Might have acoustic pingers for locating devices
1527	• Most commercial vessels require some sort of automatic signaler. The challenge
1528	is that you'd still have to have enough reserve power on board to run that
1529	emergency locator until someone comes to pick it up.
1530	 We weren't thinking about this in the power group
1531	 Unless it's got its own power
1532	• How do we manage risk so we don't go overboard with safety requirements?
1533	Teams should at least be rated on how they communicate the needs for
1534	safety in their vehicle, and what steps they've taken in their safety plan,
1535	and what of those they've implemented if selected. Should be thinking
1536	about it in initial design phases.
	e 1
1537	• Are there shipping or transportation restrictions to consider?
1538	 Shipping of Lilon batteries for instance
1539	• Are there any DOT restrictions to consider?
1540	• Other commonly used containers/crates used in industry for transport?
1541	• In most cases, when these things are shipped, they're shipped in plywood crates
1542	with packing. For example, custom cut foam and crate used. Will need a facility
1543	that can receive things of large size and move those around. Batteries generally
1544	shipped separately.
1545	• Packaging and storage requirements (long-term and short-term) may differ
1546	• Is a standard container size for shipping a useful requirement?
1547	 Could use ISO standard containers. Cradle is customized.
1548	Problem with trying to specify a size is that there are a lot of different
1549	ways to configure the platform even within the 80 kg weight requirement.
1550	If you restrict size, may introduce additional costs and engineering
1551	challenges with splitting platform parts.
1552	• What are important aspects to keep in mind when selecting test sites?
1553	• For any of the test sites, access for receipt and storage and handling of shipping
1554	containers is going to be important. Ease of maneuvering these things is also
1555	important - different access questions.
1556	• Do you suggest any particular test site locations?
1557	 NOAA has a fairly large tank in La Jolla
1558	• Thoughts on a one-size-fits-all site versus several?
1559	What's the test plan? Only testing the end system or interim tests? Tests in
1560	more controlled environments first?

1561	■ If a one-size isn't available, I'm in favor of a more phased approach. Start
1562	in a pool, then protected ocean, then open ocean?
1563	• San Clemente Island, Wilson Cove is where all the Navy's AUVs are tested.
1564	 The Navy also has a testing range in Mississippi Sound. No tank capabilities
1565	though.
1566	 If you're adding several subsystems together, you're adding complexity
1567	 Some existing frameworks for complex frameworks analysis
1568	 Need to think about how we grade teams on adding these complexities
1569	• Hope we give thought to losing vehicles, but the human safety and risk first.
1570	There's a hierarchy.
1570	There's a merarchy.
1572	Other Thoughts?
1572	 Intrinsically, a lot of the elements of the application, vehicle sizing, propulsion, etc. are
1574	inextricably linked. In order to get a good handle on the system you want people to build,
1575	some of these things need to be more fully flushed out. If you have a common battery,
1576	how do you go about sizing and loads? If you have a solution that's periodic in its energy
1570	generation, then you may want to run for a longer period. There's a lot of technology and
1578	application-specific questions that will strongly impact specification-level rules.
1579	 Any thoughts on the site itself? And ensuring safety there? Should we be looking for
1580	open ocean environments or more sheltered sites?
1581	• Depends on the sites, particularly with pools and tanks. Some will have very strict
1582	safety considerations you'll need to adhere to. If you pick the tank venue, you'll
1582	want to double check the rules. In terms of going out to see, one potential problem
1584	is that you're looking for a wave environment. You have to get them out in a safe
1585	way so it might be good to have the testing in two different phases. A calm
1586	nearshore environment or bay, and then use your acoustic navigation for example,
1587	versus a wave environment.
1588	• Agreed. Venue will dictate rules. If you're using a tank, who's tank you're using
1589	will dictate the rules.
1590	• Look into Robonation resources for other ideas and existing standards
1591	• A good framework to consider for teams to use in communicating how they think about
1592	safety for their design is STPA: Systems-Theoretic Process Analysis. There is some work
1593	already done on using STPA for maritime industries: "Towards maritime traffic
1594	coordination in the era of intelligent ships: a systems theoretic study"
1595	(https://doi.org/10.2478/9788395669606-020) and "A systems approach to risk analysis
1596	of maritime operations" (<u>https://doi.org10.1177/1748006X16682606</u>).
1597	
1598	
1599	Crosscutting Feedback
1600	During the workshop, the organizers also collected feedback on the intended mission that would
1600	frame the competition and encouraged general feedback on the intended mission that would

- 1601 frame the competition, and encouraged general feedback. For the intended missions, this 1602 included a vote and general feedback.
- 1603

1604 Intended Missions

- 1605 During the workshop, the organizers asked specifically for a vote on intended mission of the first
- 1606 DEVELOP Competition. The mission is intended to help shape and contextualize the 1607 Competition.
- 1608

1609 1610

Figure 2 - Participant poll: "Which intended mission do you think should be used for the DEVELOP Competition?" N= 45

1611	Mission specific notes:
1612	• Ice Shelf Monitoring
1613	How far must an AUV transit to go from the edge of the ice to reach the
1614	grounding line? How much time will the AUV spend under the ice? Is
1615	this captured by the 100km distance parameter? What is the expected
1616	sensor and data processing load? These questions will drive the energy
1617	requirements for the AUV.
1618	How much time will the AUV have between sorties? What are typical
1619	wave conditions near the edge of the ice? This information will inform
1620	requirements for energy harvesting.
1621	Under ice navigation over a 100km transit will be challenging. What is
1622	the requirement for navigation accuracy?
1623	Satellite coverage is more challenging at high latitudes.
1624	The AUV will probably require sufficient autonomy to determine when
1625	conditions (heavy seas, diamond dust, etc) are unsuitable for energy
1626	harvesting and/or other surface functions (e.g. comms)
1627	• Hurricane Monitoring
1628	What drives the 20 km per sortie requirement? Is this the intended
1629	distance for an AUV sprint at 5 m/s?
1630	■ A sustained speed of 5 m/s (10 knots) is very high for an AUV. While this
1631	is achievable, it requires a substantial increase in power. Consider that an

1632	increase in speed from 2.5 kts to 5 kts reflects an 8x increase in power;
1633	likewise, an increase from 5 kts to 10 kts reflects another 8x increase in
1634	power.
1635	■ When on the surface, an AUV's propulsive efficiency is greatly reduced
1636	(even in very clam water); as such, a transit at 10 kts on the surface will
1637	require even more power
1638	■ If the AUV is to follow the hurricane while submerged, how will it
1639	determine its location relative to the eye of the hurricane?
1640	■ Some USVs can travel at high speed and are quite robust to intermittent
1641	submersion; if 10 kts is a hard requirement, this may be a better alternative
1642	(with a sensor that can be dipped)
1643	 Invasive Species Surveying
1644	 Under ice navigation could pose a challengehow will the AUV
1645	determine its location and a viable route to open surface (ice free)?
1646	 The requirement references a 5 km range per sortie; this requirement may
1647	be ill-posed how can we guarantee the center of the watch circle will
1648	remain ice free? Presumably, the AUV will be near ice, given the
1649	requirement for "under ice survey"
1650	requirement for under for survey
	Despanses to the Suggested Triels
1651	Responses to the Suggested Trials
1652	In addition to considerations during breakout groups, the organizers collected information about
1653	potential trials - or tests - that could be conducted in order to test systems before an open water
1654	test.
1655	
1656	• 9.1.1 Trial 1 - Waterproofness
1657	• Statistically speaking the success rate in this trial will be adversely affected by the
1658	requirement to ship on a standard pallet. If we design and build a 2.5m long UAV
1659	then we would like to ship it in one piece and not split it into several pieces for
1660	shipping. Limiting the size of the uav to 1.2m long would likely result in
1661	difficulty meeting the power requirement.
1662	• 9.1.2 Trial 2 - Speed
1663	• Gliders have many advantages including longer endurance and lower average
1664	power consumption per distance traveled. Gliders cannot meet this speed
1665	requirement. Would you consider a different speed requirement for gliders and
1666	propeller driven UAVs?
1667	• 9.1.3 Trial 3 - Underwater Acoustic Navigation
1668	• We strongly feel that this trial does not support the goals of the competition and
1669	actually reduces the overall impact that the competition will have on its own
1670	goals. This requirement forces teams to divert effort from energy generation to
1671	navigation. However navigation is an available technology (no innovation
1672	required). Diverting team effort from innovation on core energy generation tasks
1673	to integration of navigation solutions reduces innovation in the teams reduces the
1674	overall impact of the competition. In addition, this trial specifies a method of
1675	navigation that is different to the method used in the station keeping trial
1676	(GPS/compass). Would you consider substituting a second round of energy
1677	generation trials instead of the navigation trial? For example it would be

1678	beneficial to have a first round of energy harvesting trials in a controlled wave test
1678	tank environment before the already planned open sea energy harvesting trial.
1680	• 9.1.4 Trial 4 - Energy Harvesting and Recharge
1681	• The requirement that "GPS/WiFi/Cellular antennae has an unobstructed view of
1682	the sky at all times" is onerous. Waves will naturally wash over the device. A low
1683	freeboard design is fundamental to survivability so this requirement undermines
1684	the device survivability. Would it be possible to adapt this requirement to say that
1685	"GPS/WiFi/Cellular antennae has an unobstructed view of the sky at least 25% of
1686	the time?"
1687	• The test duration is relatively long. This long duration means that the trial is a
1688	reliability test as well as an energy harvesting test. There is a conflict between
1689	innovation and reliability, more innovative designs will take more time/resources
1690	to achieve reliability while low innovation designs will achieve reliability
1691	relatively quickly and cheaply. If the focus of the competition is on innovation
1692	then the energy harvesting trial might be restructured to be less demanding in
1693	terms of reliability. A single 7 day trial favors conservative non-innovative
1694	designs as these are more likely to make it to 7 days. Alternatively 7 repeated 8
1695	hour trials with an opportunity to repair/tweak/recalibrate between tests would
1696	favor innovative but less mature designs.
1697	• 9.1.5 Trial 5 - Station Keeping
1698	• See above re "unobstructed view of the sky at all times".
1699	• 9.2 TEST ENVIRONMENTS
1700	• As mentioned above doing the energy harvesting trial in a wave test tank instead
1701	of the open sea would favor more innovative designs. The time scales of the
1702	competition are short so that achieving both genuine innovation and also
1703 1704	reliability will be difficult in the allowed time.
	Workshop Specific Foodbook
1705	Workshop Specific Feedback
1706	In addition to the summary and notes provided for each breakout, participants provided feedback
1707	on the general flow and overall workshop, as well as final thoughts about the overall scope of the
1708	competition. The feedback in its raw form is presented below:
1709	• Logistics
1710 1711	 Good effort in making the meeting telework compatible. Breakout sessions seemed to work in getting the feedback needed. Moderators were able to keep the
1712	discussion moving.
1712	 I found the format and the size of the groups to be a great way to facilitate
1714	discussions. I am sure I am not alone in having taken part in many technical
1715	competitions, so your group may also benefit from a session on competition
1716	logistics.
1717	• First, kudos on a really well organized and efficient workshop. Discussions were
1718	focused and productive, and the content seemed cleanly segmented.
1719	• The discussions were good. All the organizers have done wonderful work in
1720	preparing and facilitating the discussions.
1721	• Everybody seems to talk about charging the AUVs with wave energy? Are we
1722	allowed to use other types of energy like current and thermal, or is it restricted to
1723	wave?

1724	0	How will the mission of interest be decided?
1725 •	Scope	
1726	0	In order to facilitate emphasizing the energy harvesting aspect of vehicle
1727		development, I propose that the requirements stipulate everything you DON'T
1728		want the vehicle developer to spend their time on.
1729	0	My concern is that this competition is being steered to a direction outside of
1730		DOE's mission. It is not "powering the blue economy" any more. Instead, the role
1731		of "powering" is minimal. Then it will be similar as DAPRA and Navy's
1732		underwater vehicle competitions. Please clarify it. Thanks!
1733	0	Overall, I think this is productive. The "difficulty" I think is the possible number
1734		of combinations involved, e.g. 3 possible mission scenarios dictate different
1735		CONOPS, work in a tank, work at sea, so hard to make clear choices /
1736		recommendations on some things.
1737	0	There were detailed discussions. They could have been a little bit longer.
1738		Unfortunately, not knowing which of the 3 missions to eventually design for left
1739		many questions unanswerable. Time would have been better spent, had this
1740		answer been known yet.
1741	0	I think there was quite a bit of confusion on what the competition goal was based
1742		on the theme. I heard multiple times (including my own understanding) that we
1743		thought the DEVELOP competition was based on the winning designs presented
1744		in the DISCOVER prize. These had a wide range of use cases. This AUV with
1745		internal WEC competition really limits who can compete.
1746	0	Given the limited resources and time scale of this effort, I'd focus almost entirely
1747		on the energy harvesting technologies and have performers provide a "path
1748		forward" in words to how these could eventually be integrated into a AUV or
1749		other maritime system (like a glider). The energy harvesting is the hard part here
1750		- we should focus the effort there. Also given the physics of wave energy, some
1751		of these harvesting systems are likely to be large in size (or rather surface area) -
1752		so expecting they can be integrated into a relatively small vehicle (2.5m, 80kg) is
1753		probably an unreasonable constraint. Focusing on candidate harvesting
1754		technologies, conversion ratios (of wave energy to useful on-board power) with a
1755		mind to eventual system integration (they can specify a path, identify size classes
1756		technologies will work with, etc) would be the best use of funds here as I
1757		understand the challenge.
1758	0	I think there should be more work done determining the metrics for success that
1759		span across these different breakout topics. These types of Figures of Merit
1760		(FOMs) could really highlight the difference between solutions. For instance, to
1761		highlight smaller, more efficient vehicles: "AUV weight/mission hours." Or to
1762 1763		highlight vehicles with more efficient energy capturing methods These types of
		Figures of Merit (FOMs) could really highlight the difference between solutions
1764 1765		could be "AUV mission hours/AUV charging hours." I'd be happy to help discuss and develop these further if that's helpful -
1765	0	Just a general comment, I think the rules document should stay as agnostic to
1767	0	system architecture as possible and focus instead keep rules focused on vehicle's
1768		functions.
1/00		

1769 1770 1771	0	In terms of requirements, I think it's really important to keep the requirements of the design as agnostic to systems architecture as possible, and instead focus on
1772		requirements from the perspectives of:functional (what functions need to be done to accomplish prize
1772		 functional (what functions need to be done to accomptish prize objectives),
1774		 performance (how well the system needs to perform those functions),
1775		 interface (how the vehicle will need to interface for instance with a lifting
1776		winch/rig),
1777		 environment (what sea states and environmental conditions will it need to
1778		operate it?), and
1779		 constraints (what are the limitations on size, weight, power, etc.).
1780	0	I'd ask the organizers to clarify what new functionality we're hoping to develop in
1781		the contest that CANNOT be already had by commercially mature AUV (and/or
1782		ASV or ROV) technologies that can simply stay out longer with less human
1783		interaction. Pure energy harvesting/recharging stations are a simpler (more
1784		realistic) engineering goal for this competition, especially given the core
1785		competencies of most DISCOVER stage entrants. Simpler recharge stations
1786		would avoid a lot of integration and testing burden compared with AUVs, for
1787		instance high precision IMUs for subsea navigation or cameras and machine
1788		vision for obstacle avoidance. Those also translate into higher cost for eventual
1789		commercial systems. In most cases the only interface between the AUV
1790		functionality and the WEC functionality is power transfer, and perhaps
1791		communications, so those seem like logical places to draw the line between the
1792		two systems. There may be some redundancy is systems (eg two controllers, two
1793		battery monitors, two IMUs), but in the case of the WEC these are actually
1794		relatively simple compared with an AUV, and shouldn't distract from the large
1795		challenge of PTO/generator/battery integration, which seems to be the current
1796		industry challenge. The counterpoint here would be if we caught the interest of
1797		established AUV developers who have already solved and operationalized some
1798		of the navigation challenges I described. These would probably be the best
1799		commercialization partners, too, as they could just merge wave harvesting
1800		components with AUV components into commercial products.
1801	0	Keep the requirement minimal to encourage out of the box thinking. Rules and
1802		requirements will limit creativity.
1803	0	Avoid creating a long wish list of features. The mission should be simple with
1804		only a single purpose.
1805	0	Consider using a dummy SUV for this phase, again, the focus should be how to
1806		convert wave energy. You do not want to throw in 10 other variables into the
1807		equation