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Abstract

Unmanned Aerial Vehicles (UAVs) have the po-
tential to transform the future. However, UAV
operations are subject to strict restrictions due to
safety concerns, particularly regarding wind con-
ditions. This research explores the use of Graph
Neural Networks (GNNs) for micro-weather fore-
casting in UAV air corridors. We utilize NOAA
buoy data from Chesapeake Bay to create a pre-
dictive model. By modeling the air corridor as
a graph, we improve wind predictions by captur-
ing spatial and temporal patterns from weather
sensors. Although the model shows promise in
forecasting, challenges still remain. This work
aims to enhance real-time weather awareness and
operational planning for UAVs operating in con-
trolled airspace.

Problem Definition

➠ Current forecasting methods are not granular
enough for UAV operations.

➠ Small-scale atmospheric changes affect UAV
flight safety.

➠ Accurate micro-weather forecasting is essential
for FAA airspace integration.

Data

➠ NOAA buoy data from Chesapeake Bay used to
train the model.

➠ Three years worth of data used.
➠ Distance between Bouys range from 30 - 120m,

Problem Solution

➠ Air Corridors are Highways in the sky, guiding UAV
traffic safely.

➠ UAVs map wind data to the nearest node in an air
corridor.

➠ The GNN interpolates missing weather data
between nodes.

➠ More UAVs improve data resolution and forecasting
accuracy.

➠ GNNs dynamically model spatial dependencies
better than CNNs.

Architecture

➠ ECCConv layers capture spatial dependencies, while
GRUs model temporal weather patterns.

➠ Hybrid loss improves accuracy, batch normalization
and LeakyReLU ensures stable training.

Results

➠ The model effectively predicts wind
speed, with an average error of 0.06 m/s.

➠ Directional prediction remains
challenging, with an average angular
error of 49.87°.

➠ The Edge-Conditioned Convolution GNN
model outperforms other approaches.

Comparison

Table: Predicted vs. Actual Wind Speeds and Directions

Pred Speed Pred Direction Actual Speed Actual Direction
0.6260 83.09 0.6143 84.46
0.6267 82.17 0.6495 80.07
0.6311 81.17 0.6394 81.44
0.6289 83.09 0.6380 80.13
0.6323 81.64 0.6526 80.82
0.6240 83.12 0.6428 79.40
0.6218 82.73 0.6310 82.12
0.6340 81.52 0.6533 81.45
0.6266 83.56 0.6231 83.27
0.6351 81.58 0.6188 82.77

Conclusion

This study validates the potential of GNN-based
models for micro-weather forecasting in UAV op-
erations, achieving accurate wind speed predic-
tions while highlighting the complexity of wind
direction estimation. The Edge-Conditioned
Convolution (ECCConv) approach proved most
effective in capturing spatial dependencies, out-
performing traditional methods such as persis-
tence and nearest-neighbor models. Future work
will focus on refining angular prediction accu-
racy, expanding the graph structure to 3D rep-
resentations, and integrating real-time UAV sen-
sor data. By improving high-resolution weather
forecasting, this research supports safer and more
efficient UAV navigation, marking a step to-
ward dynamic, real-time atmospheric modeling
in airspace management.
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