COLLEGE OF ENGINEERING

TECHNICAL **COMPONENTS:**

1. Compute reach sets of UAV

2. Compute risk using Markov models

Electrical Engineering and Computer Science

PRREACH SAFETY IN THE NAS

Probabilistic Risk Assessment (PRA) with **Reach**ability for Unmanned Aerial Vehicles (UAV)

RISK OF A HAZARD OUTCOME GIVEN A HAZARD CAUSE

Reach sets of a UAV under dynamics associated with a hazard cause (e.g. sensor error causing drift) allow us to relate the UAV's feasible trajectory with a hazard outcome (e.g. collision with a person).

RIGHT: The reach sets show how all feasible trajectories under wind disturbance overlap with highly populated areas.

MITIGATING RISK THROUGH **CONTROL** OPTIMIZATION

PRReach uses a formalization of risk given reach sets to optimize for a new UAV controller that produces riskbounded trajectories.

LEFT: The reach sets and sample trajectory of a PRReachoptimized controller that avoids highly populated areas but is still able to reach the target.

TEAM:

POTENTIAL IMPACT TO THE NAS:

 Automation of FAA Part 107 Waiver Requests

• In-flight risk assessments to increase airspace safety

 Practical implementation of risk assessments given readily available UAV dynamics

• Nicole Fronda (PhD, Oregon State University) • Hariharan Narayanan (PhD, Drexel University) Houssam Abbas (Professor, Oregon State University) • Steven Weber (Professor, Drexel University)

