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INTRODUCTION

Understanding the movements and behavioral pat-
terns of endangered sea turtles and other marine ani-
mals is crucial for determining home ranges and
habitat use patterns, and for subsequently designat-
ing effective management areas. While the ecology,
movements and diving behavior of juvenile green
turtles Chelonia mydas have been reasonably well
studied (e.g. Makowski et al. 2006, Seminoff et al.
2006, Blumenthal et al. 2010, Thomson et al. 2011,
Francke et al. 2013; reviewed in Godley et al. 2008,

Hochscheid 2014), a critical knowledge gap regard-
ing ontogenetic shifts in habitat use patterns for juve-
niles is currently hindering effective conservation
and management strategies (Hazel et al. 2013).

Green sea turtles are found in tropical and sub-
tropical marine habitats around the world (Hirth
1997). They are listed as Endangered by the Inter-
national Union for the Conservation of Nature
(IUCN), while the US Endangered Species Act lists
the breeding populations in Florida and the Pacific
Coast of Mexico as endangered and all other popu-
lations as threatened (NMFS & USFWS 1991).
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ABSTRACT: To better protect endangered green sea turtles Chelonia mydas, a more thorough
understanding of the behaviors of each life stage is needed. Although dive profile analyses
obtained using time-depth loggers have provided some insights into habitat use, recent work has
shown that more fine-scale monitoring of body movements is needed to elucidate physical activity
 patterns. We monitored 11 juvenile green sea turtles with tri-axial acceleration data loggers in
their foraging grounds in Dry Tortugas National Park, Florida, USA, for periods ranging from 43
to 118 h (mean ± SD: 72.8 ± 27.3 h). Approximately half of the individuals (n = 5) remained in shal-
low (overall mean depth <2 m) water throughout the experiment, whereas the remaining individ-
uals (n = 6) made excursions to deeper (4 to 27 m) waters, often at night. Despite these differences
in depth use, acceleration data revealed a consistent pattern of diurnal activity and nocturnal rest-
ing in most individuals. Nocturnal depth differences thus do not appear to represent differences
in behavior, but rather different strategies to achieve the same behavior: rest. We calculated over-
all dynamic body acceleration (ODBA) to assess the relative energetic cost of each behavioral
strategy in an attempt to explain the differences between them. Animals in deeper water experi-
enced longer resting dives, more time resting per hour, and lower mean hourly ODBA. These
results suggest that resting in deeper water provides energetic benefits that outweigh the costs of
transiting to deep water and a potential increased risk of predation.
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Recently, both US management agencies (i.e.
NOAA and USFWS) revealed a proposed rule to
change the status of distinct population segments of
the species to threatened (Federal Register, March
23, 2015), including green turtles in Florida. As
hatchlings leaving the nest, green turtles enter an
oceanic phase (Carr & Meylan 1980, Carr 1987)
before recruiting to neritic habitats rich in seagrass
or marine algae, where they forage and grow to
maturity (Bjorndal 1997, Musick & Limpus 1997).
Although adult green turtles remain largely coastal,
they are capable of long distance migrations, with
adult females exhibiting philopatry to the region in
which they hatched (Allard et al. 1994, Plotkin 2003)
and laying several nests over the course of the sea-
son (Carr et al. 1974).

Several different techniques have been employed
in attempts to observe and study sea turtle behavior.
Studies utilizing satellite and acoustic telemetry have
inferred specific behaviors from horizontal move-
ment patterns (reviewed in Godley et al. 2008, Hart &
Hyrenbach 2009, and see examples in Hart et al.
2013, Hazel et al. 2013), or from the presence or
absence of turtles in certain depths (e.g. Mendonça
1983, Seminoff et al. 2002, McClellan & Read 2009).
Other attempts to examine habitat utilization pat-
terns have used depth-sensing acoustic transmitters
or time− depth recorders (TDRs), sometimes coupled
with satellite telemetry, to provide dive profiles from
which behaviors can be extrapolated (e.g. Brill et al.
1995, Minamikawa et al. 1997, Houghton et al. 2002,
Southwood et al. 2003, Makowski et al. 2006, Blu-
menthal et al. 2010, reviewed in Hochscheid 2014).
For example, short dives with continuous depth fluc-
tuations at the bottom of the dive have been assumed
to represent foraging (e.g. Brill et al. 1995, van Dam
& Diez 1996, Makowski et al. 2006, Seminoff et al.
2006), whereas long dives to a fixed depth are often
thought to represent resting (Hays et al. 2000, 2001,
Blumenthal et al. 2010, Okuyama et al. 2013). Recent
studies using TDRs in conjunction with video obser-
vations have shown that resting and foraging can
occur at multiple depths (Seminoff et al. 2006), and
that the maximum depth of dives did not necessarily
correspond with seafloor depth (Thomson et al.
2011). Additionally, while Francke et al. (2013) found
behaviors such as foraging, hovering, and breathing
could be determined by specific TDR parameters,
other behaviors such as swimming and resting could
not. From these studies, it is clear that a thorough
understanding of turtle behavior during dives is
dependent on the ability to obtain more fine-scale
movement data.

Acceleration data loggers (accelerometers) are
 relatively novel tools that have become popular for
studying fine-scale movements and elucidating
 animal behavioral patterns. These loggers measure
multi-dimensional acceleration, providing precise
 information on an animal’s movements and body ori-
entation, as well as depth and temperature. When
combined, these complementary data can reveal
behaviors, activity level, and energy expenditure
(Gleiss et al. 2010, Okuyama et al. 2014). Accelerom-
eters have been proven effective in studies on sea
turtle feeding (Okuyama et al. 2010), respiratory
behavior (Okuyama et al. 2014), and for quantifying
diving  behavior (Fossette et al. 2010), swimming
speeds, and rates of energy expenditure (Yasuda &
Arai 2009, Halsey et al. 2011, Okuyama et al. 2012,
2014).

In this study, we deployed tri-axial accelerometers
on juvenile green turtles in an undisturbed shallow
nursery area in Dry Tortugas National Park, Florida
(DRTO), to obtain fine-scale measurements of behav-
ior, activity patterns, and associated dive profiles for
juveniles of this species. The goals of the study were
to (1) describe the fine-scale behavior and time budg-
ets of juvenile green turtles in a nursery habitat, (2)
document the relative activity of animals over the
course of multiple diel cycles, and (3) use that infor-
mation to shed light on the physiological constraints
that may dictate turtle behavior and vertical habitat
selection.

MATERIALS AND METHODS

Study site

We deployed accelerometers on juvenile green tur-
tles caught in Dry Tortugas National Park, a cluster of
islands approximately 100 km west of Key West, FL
(near 24° 38′ 00″ N, 82° 55′ 12″ W) in the US Gulf of
Mexico (Fig. 1). The region was designated a Wildlife
Refuge in 1908, a National Monument in 1935, and a
National Park in 1992. The Dry Tortugas consists of a
series of carbonate banks and sand shoals in which
the banks roughly form a circular pattern resembling
an atoll (Mallinson et al. 2003). In January 2007, 74
km2 of the park were designated a Research Natural
Area (RNA), creating a no-take preserve to foster
ecological self-renewal by minimizing anthro-
pogenic influences (National Park Service 2006). The
RNA complements the adjacent Tortugas Ecological
Reserve of the Florida Keys National Marine Sanctu-
ary, established by the National Oceanic and Atmos-
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pheric Administration (NOAA) and the State of
Florida. An area of shallow flats partially enclosed by
Bush and Long Keys provides habitat for sea grasses
and various marine invertebrates as well as various
fish species (Carrier & Pratt 1998, Zawada & Hart
2010). This area represents a truly undisturbed
developmental habitat for juvenile green turtles, and
has allowed researchers to examine the natural
behavior of these endangered animals in the past,
capturing and tagging them with a mean recapture
rate of 65.2% over 17 sampling trips between 2008
and 2015 (K. M. Hart unpubl. data).

Animal capture and data logger attachment

We captured turtles using dip nets during the day
while aboard a 4.3 m Livingston skiff equipped with
a 25 hp motor, a capture method shown to be safe for

juvenile turtles (Schmid 1998, Ehrhart &
Ogren 1999, Hart & Fujisaki 2010). We deter-
mined recapture status (recapture or new) by
scanning for passive integrated transponder
(PIT) tags. For newly captured turtles, we
marked each animal by inserting a PIT tag in
the right shoulder and affixing individually
numbered flipper tags to each of the front
flippers following established protocols
(NMFS-SEFSC 2008). Immediately after
marking each animal or confirming that it
was a recapture, we took standard measure-
ments including curved (CCL) and straight
(SCL) carapace lengths. We weighed all tur-
tles with a spring scale and netting, estimat-
ing mass to the nearest 0.1 kg, and docu-
mented carapace and skin anomalies.

Prior to tag attachment, we removed
epibionts from the attachment site (highest
vertebral section of anterior carapace), and
cleaned the site with 91% isopropyl alcohol.
We lightly sanded the site, cleaned it again
with isopropyl alcohol, and allowed it to dry
before attaching the loggers using Super-
bondTM epoxy (a 2-part cool-setting epoxy).
We tagged turtles with Cefas G6a acceler -
ometer data loggers programmed to sample
tri-axial acceleration at 25 Hz, depth at 1 Hz,
and temperature (0.031°C resolution) once
every 30 s. These devices were 40 × 28 ×
16.3 mm and weighed 18.6 g in air. Depth
sensor resolution was 4 cm, and range of
acceleration measured was ±2 g with a reso-
lution of 0.001 g. We also tagged 3 of the tur-

tles with a MM110 VHF tag (13 × 35 mm, 10 g;
Advanced Telemetry Systems), and 5 with a V16-5H
acoustic transmitter (16 × 95 mm, 36 g; Vemco
Amirix) to facilitate active tracking and assist with
recapture and logger removal. Total tag weight on
each turtle represented <2% of the animal’s body
weight, as typically recommended for tagging stud-
ies. After allowing the tag epoxy to dry for 45 min, we
released each turtle at the site of capture.

We attempted direct behavioral observations but
were largely unsuccessful due to animal sensitivity to
humans and poor underwater visibility due to silt and
excrement from the local tern colony. However,
spontaneous validation of animal location and habi-
tat type was possible for animals equipped with
acoustic or VHF transmitters, and the latter also pro-
vided validation of surfacing behaviors.

To recover the data loggers, we located tagged ani-
mals using a VHF or acoustic receiver and attempted
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Fig. 1. Bathymetric map of the study site in Dry Tortugas National
Park, Florida (DRTO). Red star in bottom panel: general capture area 

of green sea turtles Chelonia mydas
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recapture using the same dip-net method described
above. Animals equipped only with data loggers
were recaptured when observed on several trips
specifically looking for tagged individuals. Once
recaptured, we removed the data loggers and
released turtles at the site of recapture.

Acceleration data processing

After we downloaded the data loggers, we
imported the data into Igor Pro v.6.22 (WaveMetrics)
and conducted analyses using Ethographer (Saka -
moto et al. 2009). To account for depth sensor drift,
we standardized depth by the minimum depth each
hour, which was assumed to represent the surface.

To eliminate surface turbulence from our depth
and acceleration data, as well as to standardize data
for comparisons across individuals and time frames,
we broke our continuous traces into discrete dives.
Other studies have used varying criteria to define
dives (e.g. depth > 1.5 m, or starting when the rate of
descent was >0.3 m s−1 and ending when both the
rate of ascent was >0.3 m s−1 and the depth was
<10% of the maximum for that dive) (Hays et al.
2001, Cheng et al. 2013, reviewed in Hochscheid
2014); however, the extremely shallow nature of our
study site precluded our use of these established def-
initions. We therefore classified dives as periods
when the animal was below 0.25 m for at least 30 s.

We derived dynamic acceleration using a continu-
ous wavelet transformation low pass filter with a
periodicity between 0.5 and 5 s, with the derived flip-
per beat acceleration amplitude (FBAA) and flipper
beat frequency (FBF) calculated every second from a
spectrum analysis on the heave axis. We used k-
means clustering (Sakamoto et al. 2009) to create 5
behavioral categories based on FBAA and FBF. By
examining the k-means clusters we were able to
visually interpret and assign one of the groups as
resting. Overall dynamic body acceleration (ODBA)
was calculated by summing the absolute value of the
sway, surge, and heave axes every second (Wilson et
al. 2008).

We classified a dive as a ‘resting dive’ if >50% of
the dive was determined to be resting behavior, as
determined through the k-means clustering, while
all other dives were classified as ‘active dives’. Dives
were further classified as deep if the maximum dive
depth was >2 m, as this corresponds to habitats out-
side of the flats; all other dives were considered shal-
low. We also classified a sub-set of active dives as
transiting periods, defined as episodes of movement

between shallow and deeper habitats. These periods
were visually identified as a series of dives between
a shallow active period and a deep resting period.
When transiting was from shallow to deep water, the
transiting period was delimited using the first dive to
a depth below 2 m as the start of the transiting
period, and the last active dive before a period of
deep resting as the end of the transiting period.
When transiting was from deep to shallow, transiting
was considered to begin on the first active dive after
deep resting, and to end after the last dive deeper
than 2 m. To separate nighttime and daytime dives
and behaviors, we used sunrise and sunset data for
Garden Key, Dry Tortugas, Florida as provided by
the WWW Tide and Current Predictor (Biological
 Sciences, University of South Carolina; http://tbone.
biol. sc.edu/tide). During times when data loggers
were on turtles, there was little variability in sunrise
times (06:49 to 07:19 h) or sunset times (19:29 to
20:23 h).

Statistical analysis

We used R v.2.15.2 (R Core Team 2016) for statisti-
cal analysis. Each dive was considered a single data
point, and variables were log transformed in order to
reduce heteroscedasticity and improve model fit.
Due to the repeated measure nature of our data, with
multiple dives being recorded for a single individual,
we treated individual as a random term using mixed
modeling procedures from the ‘nlme’ package in R
(Pinheiro et al. 2014). The duration of a turtle’s dive is
dependent on both the size of a breath taken at the
surface and the energy expenditure during a dive.
The size of the breath can also influence turtle dive
depth as it impacts the depth of neutral buoyancy
(Hays et al. 2004); turtles modulate the size of their
breath based on the intent of the dive (Okuyama et
al. 2014). Accordingly, we modeled the effect of dive
depth and activity level (i.e. ODBA) on the duration
of a dive (Okuyama et al. 2012).

In order to investigate the diel and depth
patterns observed in the diving behaviors of
turtles, we calculated hourly means for each turtle
for the following metrics: time resting, time diving,
average ODBA, average depth, average dive
depth, average dive duration, and percent of dive
resting. We then tested each factor for diel varia-
tion using mixed models with a categorical predic-
tor of day/night, and another of deep/shallow (with
a 2 m cutoff) determined by maximum dive depth
of that hour.
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RESULTS

We tagged 2 juvenile green turtles in September
2010, 2 in May 2012, and 8 in July 2012. Turtles
ranged in size from 30.6 to 59.7 cm CCL (mean ± SD:
41.1 ± 7.7 cm) (Table 1). We recovered data loggers
from 11 of the 12 turtles for a total of 751 h of data,
with a mean record duration of 68.3 ± 33.3 h turtle−1

(range: 43 to 118 h) (Table 1). One logger failed to
record accurate acceleration data and could there-
fore only be used in depth and temperature analyses.
We recorded a total of 9205 dives, with each turtle
logging between 198 and 1422 dives (mean ± SD:
11.75 ± 5.14 dives h−1). The mean depth of all dives in
the study was 1.34 ± 2.33 m, and overall mean dura-
tion was 234 ± 314 s. The maximum dive depth for
each individual ranged from 3.5 to 27.0 m. Most tur-
tles spent a great deal of time in shallow water, with
6 of 11 animals maintaining mean depths <1 m for
multiple consecutive days (Table 1, Fig. 2). We
divided the turtles into a ‘shallow’ group and a ‘deep’
group, determined using a 2 m mean depth cutoff
point. Animals that did make deeper dives typically
did so at night (Fig. 2). Temperatures experienced by
tagged turtles were similar, with the mean tempera-
tures for each turtle ranging from 27.5 to 29.9°C. We
found no significant differences in temperature
between ‘deep’ and ‘shallow’ dives, and no signifi-
cant correlations between temperature and any of
our hourly dive metrics.

Animals that made deep forays were generally
larger than those that remained in the shallows
throughout the monitoring period (Fig. 3).The one

exception to this pattern was the largest turtle (T2;
Table 1), a 59.7 cm CCL animal with a missing rear
right flipper. Limiting analysis to fully intact animals
(n = 10), maximum depth obtained for each turtle
 correlated significantly with CCL (ρ = 0.68, t1,8 = 2.63,
p = 0.030; Fig. 3) and weight (ρ = 0.84, t1,8 = 4.37, p =
0.002). Additionally, when limiting analyses to only
resting dives, maximum resting depth correlated sig-
nificantly with weight (ρ = 0.84, t1,7 = 3.59, p = 0.009)
but not CCL (ρ = 0.62, t1,7 = 2.13, p = 0.071)

The k-means clustering of body acceleration data
resulted in 5 unique behavioral clusters. One of these
appeared to be representative of a single unique
behavior: resting, characterized by a lack of consis-
tent flipper beats and low acceleration amplitude
(Fig. 4b,d). Using k-means clusters and depth data,
we determined 5 broad categories of behavior: ‘shal-
low active’, ‘shallow rest’, ‘deep active’, ‘deep rest’,
and ‘transiting’ (a sub-category representative of
dives moving between shallow and deeper water
habitats) (Fig. 4). Shallow active was the most com-
mon behavior in terms of both percent time and num-
ber of individuals exhibiting it. This was followed by
shallow rest, deep rest, deep active, and transiting
(Table 2, Fig. 4).

Accelerometer data revealed that behaviors had
significantly different average ODBA per dive
(F2,9001.3 = 4146, p < 0.001) (Table 2). The increased
ODBA correlates with increased energy expenditure
(Halsey et al. 2011) and thus, in the case of transiting
behavior, equates to an increased cost of moving from
shallow environments to deeper ones. Transiting was
not a particularly common behavior, accounting for
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Turtle   Date tagged         CCL     Weight   Recording     Day dive         Night dive Day duration (min)
                                            (cm)         (kg)       period (h)      depth (m)         depth (m)                 Day                       Night
                                                                                                                                                                                              

T1         20-Sep-2010         45.9         10.4             46           2.93 ± 4.98       0.31 ± 0.11       419.45 ± 536.80       34.68 ± 53.28
T2a,b     20-Sep-2010         59.7         21.8             43           1.24 ± 1.68       0.28 ± 0.01       287.05 ± 399.16       56.29 ± 26.90
T3         5-May-2012           42           10.2            102           1.64 ± 2.71       8.78 ± 3.05       176.93 ± 226.36   1129.36 ± 485.71   
T4a       10-May-2012         40.7           8.4             118           0.82 ± 0.28       0.41 ± 0.20       167.38 ± 110.47     160.69 ± 169.41
T5           7-Jul-2012           43.1           9.9              94           2.24 ± 4.03     12.48 ± 2.46       258.24 ± 418.24   1970.47 ± 428.74   
T6a         7-Jul-2012           30.6           3.6              71           0.56 ± 0.16       0.80 ± 0.40       110.06 ± 89.17       377.78 ± 224.64
T7a         7-Jul-2012           39.1           5.8              72           0.70 ± 0.33       0.80 ± 0.27       167.19 ± 114.42     393.78 ± 190.79
T8           7-Jul-2012           44.1           8.8              90           1.66 ± 1.75       2.70 ± 1.77       279.76 ± 250.43     659.19 ± 282.99
T9a         8-Jul-2012           35.3           4.8              47           0.63 ± 0.22       0.56 ± 0.13       118.00 ± 99.05       321.28 ± 147.99
T10         8-Jul-2012           33.3           3.8              46           1.70 ± 1.31       3.48 ± 0.33       225.06 ± 225.57     758.04 ± 198.51
T11a           8-Jul-2012           38.4           6.2              46           0.59 ± 0.23       0.45 ± 0.23       100.44 ± 73.37       102.42 ± 71.12   

              Mean ± SD      41.1 ± 7.7                                                                                                                                       

aThese turtles did not rest in deep water, but remained shallow for the entire monitoring period
bAnimal T2 was missing its entire rear right flipper, possibly due to predation

Table 1. Animal size and tagging information for juvenile green sea turtles Chelonia mydas tagged with Cefas G6a acceler-
ometers for this study. All depth and duration values are represented as mean ± SD. CCL: curved carapace length
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only 2.9% of dive times (Table 2). Haphazard direct
observations indicated that ‘shallow active’ animals
were likely feeding in shallow areas dominated by
turtle grass Thalassia testudinum and manatee grass
Syringodium filiforme as well as loggerhead barrel
sponges Spheciospongia vesparium (habitat de-
scribed by Lidz & Zawada 2013).

Each turtle’s maximum dive depth was found to
significantly correlate with their maximum dive
duration (ρ = 0.72, t1,9 = 3.11, p = 0.012). When ana-
lyzed for individual dives, average ODBA and dive
depth were found to significantly predict 69.2% in
the variation of dive duration (Fig. 5). Dives with
deeper and lower activity levels lasted significantly
longer (ODBA: F1,9001 = 6395, p < 0.001; dive depth:

F1,8961 = 7274, p < 0.001) whereas the largest propor-
tion of dives were ‘shallow active’ and showed a
broad range of activity levels (Fig. 5).

Nocturnal resting

Although some animals remained shallow at night
and others ventured deeper, acceleration data
revealed that nearly all animals exhibited a pattern
of diurnal activity and nocturnal resting (Fig. 2).
Overall, turtles spent 72.7 ± 5.2% of their time active
during the day and only 38.9 ± 19.9% of their time
active at night (F = 794.49, p < 0.001; Fig. 6). Addi-
tionally, mean hourly ODBA was higher during the
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Fig. 2. Depth traces for all green sea turtles Chelonia mydas, color-coded by overall dynamic body acceleration (ODBA) each
second. Blue and purple shades are representative of resting behaviors, while greens, yellows, and reds are representative of
increasingly active dives. Gray bars represent nighttime. T1 is not colored for ODBA as the acceleration sensors failed for 

this tag

Fig. 3. (a) Maximum dive depth and (b) maximum dive duration versus curved carapace length of green sea turtles 
Chelonia mydas
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Fig. 4. Examples of each of the 6 behaviors of green sea turtles Chelonia mydas observed during our study: (a) deep active, (b)
deep rest, (c) shallow active, (d) shallow rest, (e) transiting from shallow to deep waters, (f) transiting from deep to shallow
waters. X-dynamic: dynamic acceleration of flipper beats (in g); ODBA: overall dynamic body acceleration (in g); cycle: flipper
beat cycle (in s; typically between 2 and 4 s cycle−1); amplitude: a measure of flipper beat signal strength amplitude (unitless). 

Gray shading: nighttime
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day than at night (F = 296.96, p < 0.001). Several
exceptions can be noted in T4 and T11 (Fig. 2); these
2 turtles exhibited multiple nights of high activity in
the shallows.

Although there were no significant differences in
active behaviors between shallow and deep water,
resting in deeper water differed from shallow water
resting in several ways. Turtles resting in deeper
water at night spent more time resting per hour (p <
0.001), showed lower mean hourly ODBA (p < 0.001),
exhibited lower average ODBA (p < 0.001), spent a
higher percentage of each dive resting (p < 0.001),
and had longer resting bout duration (p < 0.001) than
animals resting in shallow water (Fig. 7). Two of the 3
animals equipped with VHF transmitters were
detected resting at night in water shallow enough to
allow their 25 cm VHF antennas to remain above the
surface continuously for periods >1 h. One of these
animals (T2) was approached on foot and found to be
resting in the extreme shallows (<15 cm water depth)
so that it did not have to swim to the surface to
breathe, but merely lifted its head above the surface.

68

Behavior No. of No. of FBF FBAA ODBA Percent of Percent of 
individuals dives (Hz) (g) (g) daytime nighttime

Shallow active 10 4128 0.370 ± 0.076 0.047 ± 0.016 0.097 ± 0.021 55.44 6.59
Shallow rest 9 1195 0.406 ± 0.146 0.015 ± 0.006 0.049 ± 0.013 11.13 35.91
Deep active 8 228 0.344 ± 0.031 0.054 ± 0.017 0.112 ± 0.027 9.61 2.75
Deep rest 8 550 0.480 ± 0.138 0.013 ± 0.006 0.048 ± 0.010 14.00 53.22
Transiting 10 2817 0.379 ± 0.068 0.056 ± 0.020 0.112 ± 0.0294 3.84 1.27

Table 2. Characteristics of the dive behavior classifications of green sea turtles Chelonia mydas calculated from k-means
 clustering and dive depth, including the percent time spent on each activity in day versus night. Data are only included from
animals for which acceleration data was obtained (n = 10). FBF: flipper beat frequency; FBAA: flipper beat acceleration 

amplitude; ODBA: overall dynamic body acceleration. All FBF, FBAA, and ODBA values are presented as mean ± SD

Fig. 5. Overall dynamic body acceleration (ODBA) versus dive depth in green sea turtles Chelonia mydas, color coded by dive
duration for all dives. Color shading represents results of a model constructed to predict dive duration based on dive depth and 

ODBA. Dashed line: the 2 m depth cutoff used for analyses comparing ‘shallow’ vs. ‘deep’

Fig. 6. Percent of each hour spent active (mean ± SD)
throughout the diel cycle for green sea turtles Chelonia 

mydas
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DISCUSSION

Juvenile green sea turtles in DRTO utilized ex-
tremely shallow foraging grounds with occasional for-
ays into deeper water in a pattern that has been docu-
mented for this species in other areas (Southwood et
al. 2003, Makowski et al. 2006, Blumenthal et al. 2010,
Okuyama et al. 2013) and for juveniles of other hard-
shell species (Blumenthal et al. 2009). Accelerometers
allowed us to quantify activity levels and determine
that juvenile green turtles spend much of their time
resting during deeper excursions. These deep forays
typically occurred at nighttime, when individuals re-
maining in the shallows also rested.

While it has long been known that adult green tur-
tles utilize deeper water than juveniles (Bolten 2003),
the proximate driver of this change in habitat remains
unknown. Seminoff & Jones (2006) proposed that the
deeper nocturnal dives observed in green turtles in
Baja California were spent foraging or resting; how-
ever, they had no way of determining these specific
behaviors. Here, acceleration data revealed that the
majority of deep dives seen in our study site were
spent resting. This is supported by a consistent avail-
ability of plant matter and other potential prey items
at all depths observed here, suggesting that deeper
waters are not being selected for improved foraging
success. Thus, pursuit of better foraging grounds is

also not supported by the activity traces of the deeper
diving animals, nor by our knowledge of the deeper
habitats (Lidz & Zawada 2013, K. M. Hart pers. obs.).

We propose that deeper nocturnal resting affords
animals an energetic advantage over animals that
remain in shallows. Rest and minimizing energy
expenditure is particularly important in juveniles, as
energy is needed for somatic growth (Okuyama et al.
2013). Animals choosing to rest in deeper waters
likely experienced significant energetic advantages,
evidenced by more time spent resting per hour, lower
hourly ODBA, and longer resting bouts. As an air-
breathing animal descends below the surface, the
volume of air in the lungs decreases due to increased
pressure, and the animal’s buoyancy is thereby
reduced until it reaches a depth at which it goes from
positive to neutral or negative buoyancy (Hays et al.
2004). The larger the breath taken at the surface, the
deeper the point of neutral buoyancy, and the greater
oxygen stores the animal has available during the
dive (Hochscheid et al. 1999, 2003, Hays et al. 2004).
Therefore, as turtles grow larger, they will actively
seek out waters in which they are able to achieve
neutral buoyancy, and lengthen their resting dives to
achieve maximum benefit from resting behaviors.
This supports the trend observed here for larger tur-
tles to rest longer and deeper. Our results also align
with findings from Blumenthal et al. (2009), who
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Fig. 7. Nocturnal resting in shallow
versus deep water as measured by (a)
Overall dynamic body acceleration
(ODBA) per dive, (b) percent of dive
resting, (c) ODBA per hour, (d) dive
duration, and (e) seconds of rest per
hour. Values are means ± SD. All dif-

ferences were significant (α < 0.05)
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found that juvenile hawksbill turtles Eretmochelys
imbricata began resting in deeper water as their
weight approached 10 kg, which is a similar cutoff to
that for the juvenile green turtles studied here
(Fig. 3). Blumenthal et al. (2010) also found variabil-
ity in maximum dive depth between individual green
turtles. However, all of the turtles in their study went
>10 m at least once, while over half of the turtles in
our study never reached this depth. This may be due
to the fact that most of the animals we studied were
<45 cm CCL, whereas the turtles studied by Blumen-
thal et al. (2010) were mostly in the 50 to 60 cm CCL
range. No turtle in our study smaller than 41 cm CCL
was observed to dive below 10 m, while all turtles
larger than this size were observed to dive deep at
least once. This indicates that at approximately 40 cm
CCL (mass: ~8.4 to 10.4 kg) juvenile green turtles in
this population appear to go through an ontogenetic
shift and begin to partially utilize deeper habitats.
This threshold may represent the maximize size at
which turtles can stay negatively buoyant in shallow
waters with a full breath of air. Above this size, tur-
tles may need to seek deeper water where increased
pressure will allow them to achieve negative buoy-
ancy while still taking a full breath of air, and thereby
allow them to maximize dive duration and resting
bout efficiency, as indicated by our metrics.

These benefits of resting in deep water are appar-
ently great enough to outweigh increased costs and
risks associated with this behavior. We found transit-
ing behavior had significantly higher ODBA values
than other active behaviors, meaning it is likely ener-
getically costly. Time spent transiting was relatively
brief compared to other activities, but this cost may
have been high enough to prevent some of the
smaller individuals from exhibiting deep water rest-
ing. Energetic and time costs are major factors in
determining whether an animal undertakes long-
 distance migrations (Alerstam et al. 2003), and likely
also influence short-term movements such as the diel
patterns observed here.

Additionally, transiting to a separate resting site
and the longer surfacing intervals necessary while
resting in deep water (Okuyama et al. 2013) likely ex-
pose turtles to a higher predation risk than that of
shallow-water resting, particularly at night when visi-
bility is reduced. The authors have noticed an abun-
dance of scarring or predation-related wounds on ju-
venile turtles in DRTO (16/80 [20%] individuals with
injury, including 7 major e.g. missing flippers, shark
bite, large scars/wounds) (K. M. Hart unpubl. data),
and large predatory sharks (e.g. tiger shark Galeo-
cerdo cuvier; Ault et al. 2008), goliath grouper Epi-

nephelus itajara, and an American crocodile Crocody-
lus acutus have been observed in the area (Ault et al.
2013), suggesting that predation risk may be influenc-
ing the habitat utilization patterns of these juvenile
turtles. Large predatory sharks and teleosts are com-
monly seen in the surrounding, deeper areas, but are
not typically seen in the shallow (~1 m water depth)
grass flat where these turtles were observed, captured,
and recaptured (authors’ unpubl. data). Although
little is known about predation rates for juvenile sea
turtles (see Bjorndal et al. 2003), or how relative risk of
predation affects their behavior, Heithaus et al. (2002,
2007) found adult green turtles were safer in waters 6
to 12 m compared to waters <4 m deep. The high pre-
dation rates observed in Shark Bay, Australia were at-
tributed to the ability of tiger sharks to ambush turtles
in several meters of water (Heithaus et al. 2002, 2007).
However, the results presented here are focused on a
different life stage and a shallower depth range. At
our study site in DRTO, turtles spent much of their
shallow resting time in 1 m of water or less which is
likely too shallow for potential predators, meaning
shallow resting would incur minimal predation risk. A
small animal transiting out of a core refuge and forag-
ing area may also risk getting lost or failing to return
to the core area, which could be yet another incentive
to remain in the shallows.

Our findings support those of previous studies indi-
cating that depth profiles alone are not sufficient for
predicting behavior or even activity level of diving
sea turtles (e.g. Hochscheid et al. 1999, Seminoff et
al. 2006, Thomson et al. 2011, Hochscheid 2014).
Using ODBA, we made direct measurements instead
of relying upon assumptions concerning activity lev-
els. Although we cannot say definitively that all dives
in which animals were active during the bottom
phase were foraging dives, our distinct measure of
body movement and spontaneous visual observa-
tions led us to believe that feeding was likely, partic-
ularly for the most common ‘shallow active’ dive
type. Additionally, we were able to use ODBA (a
proxy for activity) to help predict dive duration, as
shown by Okuyama et al. (2012). Further examina-
tion of this relationship may provide insight into
energy conservation strategies or underlying mecha-
nisms for species-specific life history traits.

Our data do not indicate bimodal peaks in foraging
activity during the day as has been noted in some pre-
vious studies (Bjorndal 1980, Mendonça 1983, Ogden
et al. 1983, Okuyama et al. 2013) but are more consis-
tent with other green turtle studies citing an overall
period of daytime foraging, often peaking mid-day
(e.g. Williams 1988, Makowski et al. 2006, MacDonald
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et al. 2013). This is corroborated by results from a
study involving lavage sampling of green turtles in
DRTO, which found many turtles had eaten seagrass
during the day (K.M. Hart unpubl. data). Bjorndal
(1980) reported anecdotal observations of green tur-
tles feeding on ‘bright, moonlit nights’ and Taquet et
al. (2006) noted that turtle presence in the seagrass
foraging area was positively correlated with an ambi-
ent light index. Although 2 turtles in our study exhib-
ited multiple nights of high activity levels in the shal-
lows likely associated with foraging, these animals
were not tagged during the same period, and other
animals carrying tags at the same time showed
resting behavior on these nights. Thus, nocturnal for-
aging activity appears to be associated with individual
variability rather than any environmental factors.

Several studies have attempted to look at underly-
ing causes of animal movements and migrations, and
have tested the hypothesis that migrating individuals
behave in a way that minimizes the risk of predation
mortality while increasing growth rate (Werner &
Gilliam 1984, Brönmark et al. 2008, Chapman et al.
2011, Skov et al. 2011). Although these studies em -
phasize the impact of energetic gains on growth rate
resulting from foraging, rest is also an important fac-
tor in somatic growth (Okuyama et al. 2013). Indeed,
resting can result in net energetic benefits equal to
continuous foraging (Enright 1977). The energetic
benefits of deep water resting described here (e.g.
more time resting per hour, lower hourly ODBA, and
longer resting bouts), appear to be great enough that
individuals are willing to tolerate increased energy
expenditure during transiting, as well as increased
risk of predation and getting lost in order to maxi-
mize energy savings during rest.
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