Concentrated Solar Receiver for Converting CO₂

Dimensional Energy

Technology Summary

- 100 kW_{thermal} ceramic ultra-high temperature heliostat receiver
- Cavity of porous Silicon Carbide acts as absorber / heat exchanger
- Air is thermal fluid (cheap / stable / sufficient)
- Contest would include design, modeling, manufacture, and testing of prototype on-sun at a heliostat site to determine solar-to-thermal efficiencies with forced air.

Technology Impact

- Low-cost route for ultra-high temperature receiver
- Provides 1000°C heat for use with DE thermocatalytic reactors for jetfuel production.
- Provides heat for a combined-cycle power plant for Balance-of-Plant electricity.
- Vital solar energy component for a solar-to-fuels plant ٠

Challenges

Challenge	Description	Goals
SET! Demo Day	Manufactured Solar Receiver	Optimize reactor with modeling, prepare CAD drawings, and fabricate.
GO! Demo Day	Testing of Solar Receiver on- sun with heliostat	Show >80% of heliostat solar energy that enters cavity transferred into 1000°C hot air.

Combined-cycle CO₂ Conversion electricity

Jason Salfi

CEO Co-Founde

Adrienne Lee

Brad Brennar VP of R&D

Material Scientist

Mechanical Enginee

Process Engine

Mile-High View

Circular Carbon Economy for Jetfuel

Team

Producing Fuels from CO₂ and Sunlight