

AJLA AKŠAMIJA, PhD, LEED AP BD+C, CDT Associate Professor Department of Architecture UNIV. OF MASSACHUSETTS AMHERST https://www.umass.edu/architecture/member/ajla-aksamija

KARA PETERMAN, PhD
Assistant Professor
Department of Civil and Environmental
Engineering
UNIV. OF MASSACHUSETTS AMHERST

https://cee.umass.edu/faculty/kara-peter-man

MIC PATTERSON, PhD

Ambassador of Innovation & Collaboration and Co-Founder FACADE TECTONICS INSTITUTE https://www.facadetectonics.org/people/ mic-patterson/3013

0

~

S

ш

NICK CARILLO

Construction Industry and Non-Profit Trade Association Professional WESTERN WALL & CEILING CONTRACTORS ASSOCIATION

https://www.facadetectonics.org/people/

Our project proposes a 3-step process which will integrate the currently available robotic technologies with our extensive research and development of a promising energy saving facade application technology using thermoelectrics to achieve economically feasible, energy-efficient, time-efficient and safe methods of building skin retrofits.

Step 01 utilizes robotic technologies for initial data collection and inspection of the current physical state and performance of building facades.

Step 02 integrates research current design solution facade optimization retrofits using computational software and the UMass developed thermoelectric (TE) system that generates energy using thermoelectric modules (TEMs) based on environmental factors and data from Step 01.

Step 03 applies robotic technologies to fabricate and assemble components and prototypes of full scale TE facade systems based on the optimally performing and most economic design solution determined in Step 02.

step_01

DIAGNOSIS &
INSPECTION
OF EXISTING
BUILDING SKINS
USING ROBOTIC
TECHNOLOGIES

INTEGRATION OF THERMOELECTRIC FACADE SYSTEMS IN DIFFERENT FACADE TYPES

ASSESMENT OF PHYSICAL QUALITIES

SURVEYING, RASTER SCANNING & THERMALIMAGING

ANALYZING DAMAGE & INSPECTION OF CURRENT CONDITIONS

DETECTION &
LOCATION OF
STRUCTURE FOR
INEGRATION OF
THERMOELECTRIC (TE)
FACADE SYSTEMS

step_02
VALIDATION OF

VALIDATION OF
ENERGY-EFFICIENT
BUILDING SKIN
RETROFIT STRATEGIES
& INTEGRATION OF
THERMOELECTRIC
FACADE SYSTEMS TO
ACHIEVE OPTIMAL
RETROFIT SOLUTIONS

VALIDATION

INTEGRATION OF

THERMOELECTRIC

(TE) FACADE

SYSTEMS

EVALUATION
OF PHYSICAL &
ENVIRONMENTAL
CONDITIONS DATA,
AND COMPUTATIONAL
SIMULATIONS OF
ENVIRONMENTAL
CONDITIONS

PERFORMANCE SIMULATIONS OF EXISTING BUILDING SKIN CONDITIONS

PERFORMANCE

SIMULATIONS OF

PASSIVE STRATEGY

IMPROVEMENTS TO THE

BUILDING SKIN

RETROFIT SOLUTION
OPTIMIZATION WITH
THE INTEGRATION OF
ACTIVE TE FACADE
SYSTEMS

CONSTRUCTION & IMPLEMENTATION

step_03

CONSTRUCTION & IMPLEMENTATION OF OPTIMAL RETROFIT SOLUTIONS USING ROBOTIC TECHNOLOGIES

DIGITAL FABRICATION
OF BUILDING SKIN
PROTOTYPES WITH
INTEGRATED TE FACADE
SYSTEM COMPONENTS

ROBOTIC
CONSTRUCTION &
ASSEMBLY OF BUILDING
SKIN PROTOTYPES WITH
INTEGRATED TE FACADE
SYSTEMS

ROBOTIC OFF-SITE
CONSTRUCTION &
ASSEMBLY OF FULL
SCALE TE FACADE
SYSTEM MODULES, AND
THEIR INSERTION ON
CONSTRUCTION SITE

3-STEP RETROFIT PROCESS