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1 Executive Summary

In this executive summary, we briefly introduce four additional metrics for the temporal data
challenge, evaluating the Jaccard distance, heavy hitters, and horizontal and vertical correla-
tions, respectively. We motivate these metrics with real applications. We believe that these
additional metrics can complement the JSD metric currently used in the challenge, to provide
more comprehensive evaluations. In what follows, we detail our additional metrics.

1.1 Jaccard Distance

Motivation. In the official example “PieChartMetric”, there is a misleading presence penalty
(MPP): each time a category of incident shows up as significant in the privatized data (denoted
as dp) but is actually zero in the ground truth (denoted as gt), a penalty of 0.2 is added. How-
ever, if there are many misleading presence and we repeatedly add penalties of 0.2 each, the
final loss (i.e., 0.2 times the number of incidents) will dominate all other penalties combined.
Therefore, we need a new metric that not only penalizes the misleading presence but also has
the same scale as JSD.

Formalization. In our solution, we apply Jaccard Distance (JD) instead of MPP. Let X =
(X(1), · · · , X(|I|)) be a row in gt, where I denotes the set of incidents andX(i) denotes number
of occurrences of incident i. We define a set X = {X(i)|X(i) > 0, i ∈ I}, and let X̂ be the
corresponding set in the privatized data. Then, the JD between the i-th rows in gt and dp is
defined as

JD(gti, dpi) = 1− X ∩ X̂
X ∪ X̂

Comparison with MPP. Suppose that the number of misleading presences is fixed. In that
case, MPP gives a fixed penalty, whereas JD is more adaptive in the following sense. First,
a larger size of X leads to a smaller JD. In addition, when there are many types of incidents,
a small amount of error would have little effect on JD. However, if there is only one type of
incident in gt, then one misleading presence in dp will cause 50% error.

1.2 Heavy Hitters

Motivation. Which incidents are frequently reported? For example, if injured person is fre-
quently reported, then the authority or education department may raise the awareness of first aid
guide among the public. Likewise, if armed person or robbery:armed is frequently reported,
then the public should be informed about the situation.

Formalization. Formally, given the i-th month (or throughout a year) and neighborhood A (or
the whole area), we define a k-heavy hitter incident as an incident that occurs more than k times
during that time in that neighborhood. A synthetic dataset H ′ (output) is said to be accurate
for H (ground-truth) in terms of k-heavy hitters with an error at most ∆ if the following two
conditions hold:
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• If incident X is a (1 + ∆)k-heavy hitter in H ′, then X is a k-heavy hitters in H , and

• If incident X is not a (1−∆)k-heavy hitter in H ′, then X is not a k-heavy hitters in H .

Once the conditions above are violated, we add a constant penalty h to the total loss denoted as
HH. To be consistent with JSD, we set the maximum penalty of one row in H ′ to 1. The overall
HH penalty for H ′ is the sum of penalties across all neighborhoods in M months.

1.3 Horizontal Correlation

Motivation. Throughout a year, how does the number of armed person in neighborhood A
correlate with the number of armed persons in neighborhoodB? If there is a strong correlation,
then it is likely that some incidents in the two neighborhoods are related. Such information
could be used to decide police patrol routes, etc. Similarly, it could be useful to preserve the
correlations among other incidents.

Formalization. We define a new metric, referred to as horizontal correlation (HC), inspired
by the well-known similarity measure Pearson Correlation Coefficient (PCC). PCC can reflect
the vertical correlation of two time series. The higher the PCC of two series is, the closer they
are. Formally, given XA that denotes the occurrences of type X in neighborhood A in a series
of months and Y B, the correlation between them is defined as

r(XA, Y B) =
cov(XA, Y B)

σXAσY B

r(XA, Y B) ranges in [−1, 1]. In privatized data Ĥ , there is a corresponding correlation
r(X̂A, Ŷ B). The HC penalty of Ĥ is defined as the sum of absolute differences between
r(XA, Y B) and r(X̂A, Ŷ B) whenever |r(XA, Y B)| > 0.9.

1.4 Vertical Correlation

Motivation. In each neighborhood, what is the distribution or trend of incidents over time?
Existing research [1, 4, 5] has shown that the patterns of incidents such as crime fluctuate sea-
sonally, and different types of crime vary in their strength and seasonalities. If the emergency
dispatch office learns the distribution and trend of incidents in each neighborhood, they may
arrange the police force in accordance with seasonality of crime, which may improve the effi-
ciency and effectiveness of their work. Additionally, the government may put in more security
and publicity effort during the peak months or seasons of incidents, for public safety.

Formalization. In order to evaluate how well the differential private data retains the trend
of incidents, we define a new loss function referred to as vertical correlation (VC). Let XA

denotes the occurrences of typeX in neighborhoodA in a series of months. The corresponding
time series in differential private data (dp) is X̂A. The PCC between XA and X̂A, r(XA, X̂A),
can measure the similarity between XA and X̂A. Then 1

2
(1 − r(XA, X̂A)) can describe the

dissimilarity between XA, X̂A and its value locates in [0, 1]. To penalize the dissimilarity of
all time series between gt and dp, we sum this value over all incidents and neighborhoods, and
define it as the VC penalty of dp.
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2 Metric Definition

2.1 Technical Background

2.1.1 Jensen Shannon Distance

The main metric, Jensen-Shannon Distance, is the square root of the Jensen-Shannon diver-
gence. Given two probability distributions P and Q, we define the Jensen-Shannon distance
JSD(P,Q) as:

JSD(P,Q) =

√
D(P ||M) +D(Q||M)

2

where M = (P +Q)/2 and D is the Kullback-Leibler divergence..
The form of Jensen Shannon Distance is similar to KL divergence. However, KL diver-

gence becomes infinite if some cell is zero in the ground truth data gt but is non-zero in the
differentially private data dp due to positive noise. This penalizes the difference between gt and
dp too harshly. Therefore, we choose Jensen Shannon Distance but combine it with a Jaccard
Distance (JD) to penalize the spurious labels that do not appear in the ground truth data.

2.1.2 Jaccard Index

Jaccard index is a measure of similarity between two sets. It compares their shared and distinct
members. The higher the Jaccard index is, the similar the two sets are. Given two sets X and
Y , their Jaccard index is defined as

J(X, Y ) =
X ∩ Y
X ∪ Y

,

whose range is [0, 1]. According to this, the Jaccard Distance (JD) is defined as

JD(X, Y ) = 1− J(X, Y ),

whose value also locates in [0, 1]. It is worth noting that the value of Jaccard index and Jaccard
Distance are sensitive to the size of the two sets.

2.1.3 Pearson Correlation Coefficient

The Pearson Correlation Coefficient (PCC) is a widely used statistic that measures linear cor-
relation between two series X and Y . Given two series (vectors) X and Y , the formula of PCC
is defined as:

r(X, Y ) =
cov(X, Y )

σXσY

where cov(X, Y ) = E[(X−E[X])(Y −E[Y ])] is the covariance between X and Y and σX , σY
are the standard deviation of X and Y .

2.2 Formal Metric Definition

In this subsection, we propose four additional metrics for the temporal data challenge, including
the Jaccard distance, heavy hitter, horizontal correlation among incidents and vertical correla-
tion between time series. We motivate these metrics with real world applications. Then we give
a formal definition for each metric and demonstrate how to calculate them. These additional
metrics complement the JSD.
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2.2.1 Jensen Shannon Distance

Motivation. Jensen Shannon Distance or Divergence is a useful metric in many area such as
machine learning [3] and social sciences [2]. It completely describes the statistical difference
between two distributions. So, We reserve this metric and will briefly introduce it following the
given documentation “PieChartMetric”.

Formalization. One row of the ground truth and differentially private data can be regraded as a
vector of non-negative incident counts. We denote them as gti and dpi. Firstly, we zero out the
non-significant count whose frequency is less than a Frequency Threshold (FT) in each vector.
Secondly, we divide the vector by its new sum to normalize it and compute JSD(gti, dpi).
Thirdly, we add a Bias Penalty (BP). BP (gti, dpi) = 0.2 if the sum of the counts in dpi is
more than 500 off from gti, otherwise BP (gti, dpi) = 0. Thus, the complete loss function is as
follows,

Loss(gt, dp) =
∑
i∈R

JSD(gti, dpi) +BP (gti, dpi)

where R denotes the number of rows.

2.2.2 Jaccard Distance

Motivation. In the official example, it adds a misleading presence penalty (MPP). That is, each
time a category of incident shows up as significant in the privatized data but is actually zero in
the ground truth, they add 0.2 as penalty. However, if there are many misleading presence and
we continuously add 0.2, the final misleading loss (0.2x[Number of incidents]) will be much
larger than other metrics. So, we need a new metric that can not only penalize the misleading
presence but also have the same scale as JSD. In our solution, instead of adding MPP, we apply
Jaccard Distance.

Formalization. Given a row in the ground truth data X = (X(1), · · · , X(|I|)), where I denotes
the set of incidents and X(i) denotes number of occurrences of incident i. We define a set
X = {X(i)|X(i) > 0, i ∈ I} and X̂ is the corresponding set in differentially private data. Then
the formula of Jaccard Distance is defined as,

JD(gti, dpi) = 1− X ∩ X̂
X ∪ X̂

(1)

Now we set the loss function as,

Loss(gt, dp) =
∑
i∈R

ω1JSD(gti, dpi) + ω2JD(gti, dpi) +BP (gti, dpi)

where ω1, ω2 are weights of the metrics.

Evaluation. Notably, when the number of misleading presences is fixed, the larger the size of
X is, the smaller the Jaccard Distance is. This is intuitively understandable, when there are
many types of incidents, a small amount of error has little effect. However, if there are only
1 type of incident in gt, 1 misleading presence in dp will cause 50% error. Moreover, unlike
MPP, JD(gti, dpi) always ranges in [0, 1]. Even if there are many misleading presences, it will
not dominate the total loss Loss(gt, dp). Therefore, the Jaccard Distance is more adaptive and
more suitable than MPP.
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2.2.3 Heavy Hitter

Motivation. Which incidents are frequently reported? For example, if injured person is fre-
quently reported, then the authority or education department may raise the awareness of first aid
guide among the public. Likewise, if armed person or robbery:armed is frequently reported,
then the public may need to be warned in advance, or even acquire some knowledge on how to
deal with armed persons (e.g., self-defense, being precautious,etc.).

Formalization. Formally, given the i-th month (or throughout a year) and neighborhood A (or
the whole area), we define a k-heavy hitter incident as an incident that occurs more than k times
during that month in that neighborhood. A synthetic data-set H ′ (output) is said to be accurate
for H (ground-truth) in terms of k-heavy hitters with an error at most ∆ if the following two
conditions hold:

• If incident X is a (1 + ∆)k-heavy hitter in H ′, then X is a k-heavy hitters in H , and

• If incident X is not a (1−∆)k-heavy hitter in H ′, then X is not a k-heavy hitters in H .

In particular, once the conditions above are violated, we add a constant penalty h to the total
loss denoted as HH. With k and ∆ fixed, to be consistent with JSD, we set the maximum
penalty of one row in H ′ to 1. The overall penalty for H ′ is the sum of penalties across all
neighborhoods in M months. The formula of HH can be defined as,

HH(gt, dp) =
∑
i∈R

HH(gti, dpi) =
∑
i∈R

min(ti ∗ h, 1) (2)

where ti counts the violation times of the above conditions over all incidents in one row of data.

Calculation. Let us consider the following two histograms H ′ and H̃ (privatized data), and
the original histogram H (ground-truth). They all correspond to the number of occurrences
of incidents in neighborhood A on January. The total number of incidents reported in each
histogram are all 1000. In H , incident type E1 occurs with frequency 40% while E2 to E5
each occurs with frequency 15%, and the rest incidents never occurs. In H ′, E1 occurs with
frequency 1 while in H̃ , E1 occurs with frequency 0 and E2 to E5 occurs with frequency 25%,
as Figure 1 shows. According to the definition, JSD(H ′‖H) = 0.46 while JSD(H̃‖H) =
0.16. Hence, H ′ is more favorable than H̃ in terms of its Jensen-Shannon divergence w.r.t. H .
However, the 250-heavy hitters in H ′ and H̃ are totally different. With k = 250, ∆ = 0.2
and h = 0.2, the penalty for H ′ is 0 while the penalty for H̃ is min(5 ∗ 0.2, 1) = 1. This
concrete example shows that JSD can not be used to evaluate the heavy hitters. In addition,
we believe that heavy hitters are important information to preserver, it shall be considered as a
compensation metric to the JSD.

Figure 1: The ground-truth histogram H and two output histograms H ′ and H̃ for evaluation.
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2.2.4 Horizontal Correlation

Motivation. Throughout a year, how does the number of armed person at neighborhood A
correlates with the number of armed at neighborhood B? If there is a strong correlation, then it
is likely that two reports in different neighborhoods are concerning with the same armed person
(or a group of criminals). Given this information, the police may stand more chance to locate
the armed person (or a group of criminals). Furthermore, if the armed person reported at A
is correlated with abduction at B, the police may also set up barricades on the routes from B
to A to stop the vehicles of the criminals or warn the resident in B in advance. Similarly, it
is useful to preserve the correlations among armed person, missing person, narcotics, and lost
child, etc..

Formalization. Hence, it is important to keep the correlation between different incidents.
We define a new metric called HC, inspired by the well-known similarity measure Pearson
Correlation Coefficient (PCC). PCC can reflect the vertical correlation of two time series. The
higher the PCC of two series is, the closer they are. Formally, given two incidents X and Y
and two neighborhoods A and B, the correlation between X reported at A and Y reported at B
is calculated as:

r(XA, Y B) =
cov(XA, Y B)

σA
XσY B

=
1

M

M∑
i

(XA
i − X̄A)(Y B

i − Ȳ B)

σXAσY B

where XA
i denotes the number of occurrences of type X in neighborhood A in the i-th month,

X̄A is the corresponding average over M months, and σXA denotes the corresponding standard
deviation. r(XA, Y B) ranges between −1 and +1. In privatized data, there is a corresponding
correlation r(X̂A, Ŷ B). Given M months data happened in a neighborhood A, the metric HC
is defined as,

HC(gt, dp) =
∑
A∈P

HCA(gt, dp)

=
∑
A∈P

1

|I|
∑
X∈I

1

|C(XA)|
∑

Y B∈C(XA)

M

2

∥∥∥r(XA, Y B)− r(X̂A, Ŷ B)
∥∥∥
1

(3)

where P denotes the set of all neighborhoods, I denotes the set of all incidents and C(XA) =
{Y B ∈ P × I | |r(XA, Y B)| > 0.9} denotes the set of the [neighborhood]×[incident] that are
highly related to XA. The loss of XA is 0 if |C(XA)| = 0.

Evaluation. Considering a neighborhood A, an incident type X and Y B ∈ C(XA), the penalty
of H ′ is defined as absolute difference of H ′ and H in terms of r(XA, Y B). Similar to the
heavy hitters, we need to normalize the this penalty to be consistent with JSD. We propose to
firstly divide the penalty by 2 to make it in range [0, 1]. Next, we multiply the sum by M since
r(XA, Y B) is calculating by M months (M rows). Finally, we take the average of all penalties
across C(XA) and I in the neighborhood.

Calculation. The calculation of HC has two steps: constructing C(XA), XA ∈ P × I (one-
time processing) and calculating r(X̂A, Ŷ B) (for each privatized data-set). Assume there are
200 neighborhoods and 200 incident types. Although constructing C(XA) for all XA costs
2 ·
(
200
2

)
·
(
200
2

)
≈ 8 · 108 operations, it is a one-time process that can be done in advance. The

time complexity of calculating all r(X̂A, Ŷ B) isO(
∑
A

∑
X

|C(XA)| ·M) ≈ O(M |P| |I|), where

|C(XA)| is usually a very small number (< 10) in practice. Therefore, the time consumption of
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HC is comparable to other metrics like JSD. The reason that JSD can not express correlations
between incidents is similar to the previous case. It is possible that E1 and E2 are positively
correlated in both H (the ground-truth) and H ′ (output), while they are negatively correlated in
H̃ . However, it is possible that H̃ has a smaller JSD w.r.t H compared with H ′. The construc-
tion of such a counter example is in spirit similar to the previous one. In conclusion, JSD can
not express heavy hitters in a neighborhood at a time nor correlations among incidents. Con-
sidering the importance of both heavy hitters and correlations, we should use these additional
metrics to JSD.

2.2.5 Vertical Correlation

Motivation. In each neighborhood, what is the distribution or trend of incidents over time?
Many researches such as [1, 4, 5] have shown that the patterns of incidents like crime fluctuate
seasonally and different types of crime vary in their strength and seasonalities. If the emer-
gency dispatch office learn the distribution and trend of incidents in each neighborhood, they
can arrange the working hours of the police seasonally and rationally dispatch police strength
in Baltimore, which will greatly improve the efficiency and effectiveness of their work. Addi-
tionally, the government can increase security and publicity during the month or season of high
incidents to protect people from danger.

Formalization. Therefore, in order to evaluate how well the differential private data keeps
the trend of incidents, we define a new loss function called VC. Given an incident X lasted
M months in ground truth data (gt), we let XA

t , t = 1, · · · ,M denotes the proportion of
type X of the overall incidents happened at time t in neighborhood A. Let time series
XA = (XA

1 , · · · , XA
M). The corresponding time series in differential private data (dp) is

X̂A = (X̂A
1 , · · · , X̂A

M). Then the Pearson Correlation Coefficient r(XA, X̂A) that measures
the similarity between XA and X̂A is:

r(XA, X̂A) =
cov(XA, X̂A)

σXAσX̂A

Then 1
2
(1 − r(XA, X̂A)) can describe the dissimilarity between XA, X̂A and its value locates

in [0, 1]. Therefore, to penalize the dissimilarity of all time series between gt and dp, we define
the loss of the whole data as follows:

V C(gt, dp) =
1

|I|
∑
A∈P

∑
X∈I

M

2
(1− r(XA, X̂A)) (4)

There are some special cases that PCC is inapplicable (σXA = 0 or σX̂A = 0), we treat them as
follows.

• If max
t
|XA

t − X̂A
t | <= FT

2
, V C(XA, X̂A) = 0.

• If FT
2
< max

t
|XA

t − X̂A
t | <= FT , V C(XA, X̂A) = 0.5M .

• If max
t
|XA

t − X̂A
t | > FT , V C(XA, X̂A) = M .

where FT is the frequency threshold, A ∈ P , X ∈ I.

Evaluation. We time the original dissimilarity with M and divide it by I to make it consist
with JSD since the calculation of JSD includes all incident types and is computed row by row
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(month by month). Here ω5 is a weight used to adjust the importance of VC compared with
other losses such as JSD.

Calculation. We give an example in Table 1. The columns in H are ground truth and the
columns in Ĥ and H̃ are outputs of two differential private algotithms. Each column can be
regarded as a time series except for the first column denoting months from Jan. to May. For sim-
plicity, we consider only two incidents I1 and I2 and each cell in the table denotes the proportion
of the incident in the corresponding month (we normalize each vector by dividing its sum). Ac-
cording to the data in Table 1, JSD(Ĥ||H) = 0.75 while JSD(H̃||H) = 0.37. However, for
our metric VC (setting ω5 = 1), we notice that V C(Ĥ,H) = 0 while V C(H̃,H) = 1.88! In
addition, if the data contains longer time series, the VC may be even larger. Obviously, the data
Ĥ is in compliance with the variation of the ground truth data H while the data H̃ completely
deviates from the trend of H . The Jensen Shannon distance, unfortunately, cannot capture this
important feature. So, the metric VC is necessary.

Table 1: Data of the ground truth H and two output Ĥ, H̃ in 5 months at some neighborhoods

Month H Ĥ H̃
I1 I2 I1 I2 I1 I2

1 0.3 0.7 0.15 0.85 0.4 0.6
2 0.3 0.7 0.15 0.85 0.2 0.8
3 0.3 0.7 0.15 0.85 0.4 0.6
4 0.4 0.6 0.25 0.75 0.4 0.6
5 0.3 0.7 0.15 0.85 0.4 0.6

2.2.6 Metric Combination

Combing all the metrics mentioned above, the final metric can be defined as follows,

Loss = (ω1JSD +BP ) + ω2JD + ω3HH + ω4HC + ω5V C (5)

where ω1, ω2, ω3, ω4, ω5 denote the weights of the metrics.

2.3 Explanation of Metric Parameters

In this subsection, we provide explanation for each of the parameters that affect the performance
of the metrics. We cover all parameters that can affect the discriminative power of the metric.

2.3.1 Data Configuration Parameters

Our metrics are based on a histogram of record types. In the 2019 Baltimore Police Incident
and 911 data-set, record type refers to incident descriptions.

2.3.2 Tuning Parameters

Heavy Hitter: ∆, k, h. When applying Heavy Hitter metric, we recommend setting the ∆
around 20%. If the ∆ is set too big, this metric would never take effect. If it is too small, most
of rows will get a loss near 1 so that the metric does not have any discriminative power. The
motivation of Heavy Hitter focus on the frequent incidents, whose occurrences are prominent.
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As a result, for one row X = (X(1), · · · , X(|I|)) in the data, we set k equal to b 1
10

∑
i∈I

X(i)c, i.e.,

1/10 of the sum of all incidents’ occurrences.

Frequency Threshold: FT. In both ground truth and differentially private data, we set the
incident count to 0 when its frequency proportion is less than FT%. FT% is usually set to
≤ 5%. The official document “PieChartMetric” has demonstrated the impact of tuning FT so
we will not repeat in this report.

Bias Penalty Amount: BP. When we compute the JSD between two rows, we only compare
their vector after normalization. However, the sum of a vector could vary largely while its
elements keep their proportion invariant. So, we need this penalty to evaluate the sum of each
row and add it to JSD. In practise, we set BP in [0, 0.1] to avoid a too harsh penalty.

Metric weight: ω1, ω2, ω3, ω4, ω5. For the five metrics mentioned above (JSD, JD, HH,
HC, VC), JSD has better statistical properties and it can capture every detail of the data
while the other four additional metric can be regarded as a compensation of JSD. So,
we increase the importance of JSD and set the their weights ω = (ω1, ω2, ω3, ω4, ω5) =
(0.3, 0.15, 0.15, 0.15, 0.15). We will explain why we apply this setting later. The weights will
not affect the performance of each metric. It only affects the final score. Moreover, how the
weight are set depends on our analysis purpose — what features we need in the data-set. So,
we will not explore the effect of ω.

2.4 Snapshot and Deep Dive Modes

2.4.1 Snapshot Mode

JSD, BP, JD, and HH are calculated by row. JSD, JD and HH range in [0, 1] while BP range in
[0, 0.1]. Although the Vertical Correlation is calculated by column, if we look at it in another
light, it assigns identical loss ranging in [0, 1] for every row in the column. Therefore, the final
loss of each row has a minimum score of 0 and a maximum score of (0.3+0.15+0.15+0.15+
0.15) ∗ 1 + 0.1 = 1. For the whole data, it has a minimum score of 0 and a maximum score
equal to [total number of map segments] × [total number of time segments].

2.4.2 Deep Dive Mode

Since all of our metrics scores map or time segment separately, it provides clear utility for deep
dive investigation.

For the metrics calculated by row, the Temporal Scores Chart allows you to select any
neighborhood and see the change in scores of all metrics in that neighborhood over each of the
time segments. The HC and VC metric scores are identical during 12 months in each neigh-
borhood since their calculation takes 12 months data together. Table 2 gives an sketch of our
metric scores in Remington and Reservoir Hill over months in 2019. The last column, “Total”,
score is calculated by equation 5 with (ω1, ω2, ω3, ω4, ω5) = (0.3, 0.15, 0.15, 0.15, 0.15).
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Table 2: A sketch of Temporal Scores Chart at neighborhood 213 (Remington) and neighbor-
hood 214 (Reservoir Hill) in 2019. Ground truth: the 2019 Baltimore Police Incident and 911
data-set. Privatized data: additional Laplace noise with ε = 4.

Neighborhood Month JSD BP JD HH HC VC Total
213 1 0.372 0.100 0.667 0.080 0.121 0.277 0.383
213 2 0.268 0 0.667 0.080 0.121 0.277 0.252
213 3 0.190 0 0.500 0.080 0.121 0.277 0.203
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
214 1 0.335 0 0.400 0.080 0.171 0.290 0.242
214 2 0.243 0 0.250 0.100 0.171 0.290 0.195
214 3 0.018 0 0 0.160 0.171 0.290 0.099

3 Metric Defense

3.1 Exploration of Parameter Tuning

3.1.1 Data

We use a publicly available data provided by Sprint 1 of the NIST Differential Privacy Temporal
Map Challenge which records 911 calls that occurred in Baltimore in 2019. The privatized
data used for our analyses is generated by the baseline differential privacy algorithm from that
challenge’s competitor’s pack. There are privatized data in poor quality (ε = 0.5) and moderate
quality (ε = 4). To explore the impact of the parameters, we focus on the distribution of scores
of the metrics.

3.1.2 Metric Parameters

Unless otherwise stated, the parameters of our metrics have been set to the defaults given in
the Metric Definition, where ω = (0.3, 0.15, 0.15, 0.15, 0.15), ∆ = 0.2, k = b 1

10

∑
i∈I

X(i)c,

h = 0.02, FT=0.05, BP=0.1.

3.1.3 Scores Composition

The total score has six components as described in the Metric Definition section above: JSD,
BP, JD, HH, HC, VC. Here we look at the impact each component has on the total score, depend
on the quality of data. We sum the scores of each metric in 12 months in each neighborhood
and Figure 2 shows the results. Here we do not focus on the HC metric since it costs a lot
of preprocessing time. We can find out that our metrics have a strong discriminative power in
Figure 2. It is obvious in all our metrics that the scores from the poor quality privatized data-set
(ε = 0.5) are much larger than those from the moderate quality data-set(ε = 4).

3.1.4 Effect of ∆ in HH

We now briefly explore the effect of increasing and decreasing the ∆ from the default value
∆ = 0.2.

When ∆ = 0.1 or ∆ = 0.2, the scores are nearly uniform in the range [0, 1]. However,
when it increases to ∆ = 0.4, the restrictions of HH are loosen so that the frequency of high
score decreases a lot. We can observe that there is a slope between low and high scores. In this

10



0 50 100 150 200 250
Neighborhood

0

2

4

6

8

10

Sc
or

e

JSD Score

epsilon=4
epsilon=0.5

(a) JSD Score

0 50 100 150 200 250
Neighborhood

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Sc
or

e

BP Score

epsilon=4
epsilon=0.5

(b) BP Score

0 50 100 150 200 250
Neighborhood

0

2

4

6

8

10

12

Sc
or

e

JD Score

epsilon=4
epsilon=0.5

(c) JD Score

0 50 100 150 200 250
Neighborhood

0

2

4

6

8

10

12

Sc
or

e
HH Score

epsilon=4
epsilon=0.5

(d) HH Score

0 50 100 150 200 250
Neighborhood

3.0

3.5

4.0

4.5

5.0

5.5

Sc
or

e

VC Score

epsilon=4
epsilon=0.5

(e) VC Score

0 50 100 150 200 250
Neighborhood

1

2

3

4

5

6

7

8

Sc
or

e

Total Score

epsilon=4
epsilon=0.5

(f) Total Score

Figure 2: Sum of the scores in 12 months (y-axis) of each metric over all neighborhoods (x-
axis). The orange points represent the poor quality privatized data-set (ε = 0.5) and the blue
points represent the moderate quality data-set(ε = 4)

11



condition, the discriminative power of HH metric is not enough. Therefore, we recommend to
set the ∆ ≤ 0.2 to make the metric effective.
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Figure 3: Effect of ∆ on HH score on the poor quality privatized data-set (ε = 0.5). Let
k = b 1

10

∑
i∈I X

(i)c, h = 0.01.

3.2 Description of Discriminative Power

In this subsection, we briefly outline the capabilities and limitations of our final metric with
respect to its discriminative power, i.e., how well it can distinguish between a privatized data
and the ground truth.

3.2.1 Capabilities

• Our metric identifies disparities between the distribution of high frequency record types
by JSD and Heavy Hitter.

• Our metric adaptively penalizes spurious record types that appear to be high frequency
in the privatized data caused by rare large noise values by JD.

• Our metric specifically penalizes positive or negative bias in total record counts by BP.

• Our metric captures the correlation between any two record types (or two numerical
features) in any two areas so that provides a broad pattern to evaluate the privatized data
by HC.

• Our metric can measure the trends of record types (or two numerical features) across
time by VC.

• The weights of the metrics can be flexibly tuned for distinct analysis purposes.

• Our metric can respond to small changes in the value of epsilon, and allows us to mean-
ingfully understand the impact of those changes on different aspects or dimensions of
data.

3.2.2 Limitations

• Our metric does not capture the relative ranking of high frequency record types. It is not
motivated to know which record type causes the loss.
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• When calculating scores of the JSD metric, less frequent record types are discarded dur-
ing the frequency thresholding and numerical features need to be partitioned into bins.
(The HC and VC metrics do not have these limitations.)

3.3 Description of Coverage

In this subsection, we briefly outline the capabilities and limitations of our final metric with
respect to its coverage, i.e., how well it represents a breadth of possible use cases.

3.3.1 Capabilities

• Our final metric has five components that provide the reader with various perspectives to
evaluate the privatized data. Those components are commonly used in machine learning
tasks, social sciences, etc.

• Our metric can cover applications that study large patterns/trends across time or geogra-
phy by HC and VC.

• Our metric not only counts the overall distribution difference (by JSD), but also focus on
the record types with relatively high frequency (by HH) and close correlation (by HC).

• Our metric maintains accuracy across repeated numerical operations over privatized data
by HC. The HC metric finds the most close correlations and evaluates how those corre-
lations change in the privatized data.

3.3.2 Limitations

• Our metric does not cover more complex analytics (ex: regression, classification) which
may have different sensitivities to added noise.

• Our metric attaches less importance to the infrequent record types. In fact, it is difficult
to guarantee both privacy and accuracy of them since even a small amount of additional
noise will largely affect the their frequencies.

3.4 Scalability/Feasibility

Suppose the data contains |P| neighbourhoods (map segments), |I| incidents and M months
(time segments). In the 2019 Baltimore Police Incident and 911 data-set, |P| = 277, |I| =
174,M = 12. Same as JSD, the JD, HH and VC metrics are constant time operation in terms
of the number of incidents, map segments and time segments. Computing them needs a time
complexity ofO(M |P| |I|). Moreover, in this data-set, computing HC also costsO(M |P| |I|)
time. In our experiments, they can be computed within seconds on a typical laptop.

3.5 Generalizability, Alternate Use Cases

In this report, we have demonstrated the definition of our metrics including motivation, for-
mulation, evaluation and how our four additional metrics can apply to event records. We also
explore the impact of tuning parameters on metric scores. Finally, we summarize the discrimi-
native power and coverage of the metrics. Here are a few additional examples how the metrics
could be applied.
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• Our five metrics can apply to various kinds of data with binning numerical features such
as demographic data and financial data since “record type” can be easily defined in these
data-sets.

• With default settings, our metrics do not capture trends across geography. However, it
could be applied to capture more information by setting record types to be “Events that
happened in region A (region A covers many neighbourhoods A1, A2, · · · )”. Then we
can apply the metrics in the same way as discussed above.
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