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Executive Summary 
Metric Overview 

The objective of the confusion matrix metric is to measure the quality of the privatized dataset in 
comparison to the ground truth dataset with respect to both map and time segments. This metric has been 
adapted from the pie chart metric created by Christine Task, Knexus Research Corporation Issac Slavitt, 
DrivenData Inc. The original pie chart metric quantizes the effects of the privatization algorithm by 
looking at the Jensen-Shannon distance between the privatized dataset and the ground truth dataset in 
addition to the number of false presences as well as the overall increase of the values in the privatized 
dataset. The confusion matrix metric seeks to cover more of the holes in data quality the privatized dataset 
may contain, by introducing two additional components: the rank change penalty (RCP) as well as the 
trend penalty (TP).  
 
In the pie chart metric, all of the data is normalized and records that contain less than k% (in this case we 
will be using 5%) are dropped before calculating the Jensen-Shannon distance (JSD) between the 
privatized and ground truth datasets. This value is then added to the Misleading Presence Penalty (MPP) 
which is a tunable parameter that adds a penalty (in this example we use 0.2) to the JSD every time there 
is a false positive in the privatized dataset (essentially when a record is 0 in the ground truth dataset and 
non-zero in the privatized dataset). Prior to normalization and dropping of insignificant counts, the Bias 
Penalty (BP) is calculated, which is another tunable parameter that is added to the JSD and MPP if the 
total record count in the privatized data is more than the Bias Penalty Threshold (in this example we use 
BPT = 500). The resulting metric uses the sum of these three parameters in the following expression: 1 - 
min(JSD + MPP + BP, 1) to get the score that describes the quality of the privatized dataset.  
 
In the confusion matrix metric, the pie chart metric is altered to include the RCP along with the addition 
of a parameter separate to the categorical pie chart and RCP metrics known as the trend penalty. The TP 
looks at whether or not the time-series pattern present in the ground truth data is preserved in the 
privatized data. The ability to make decisions based on how data changes over time is extremely 
important, so this penalty is to be looked at separately from the evaluations done on the spatial data. The 
RCP penalizes the dataset for large changes in categorical rankings after privatization. Decision-making 
relies on prioritization of issues based on their importance, which can be expressed by ranking issues 
based on record count. Therefore, it is important that the metric penalize large ranking changes that render 
the dataset unusable for these purposes. An example of the metric utility is given below: 
  
Ground truth: [36, 41,  0,  0,  0, 58,  0,  0, 33,  0]               Privatized: [40, 43,  6,  7,  1, 58,  0, 11, 34,  7] 
 
In this example, we assume each index in the array represents a unique category, and the values at each index 
represent the number of records per category. For these two arrays, JSD = 0.60 (for base = 2), MPP = 1.0, BP 



= 0. To calculate RCP, we first create 10 bins (tunable parameter) of width max(array)/9 (also a tunable 
parameter) and then assign each value in the arrays to a bin. The bins for these two examples are: 
 
[ 0,  6.44, 12.88, 19.33, 25.77, 32.22, 38.66, 45.11, 51.55, 58, 64.44] 
 
The numpy.digitize function assigns each value in the arrays to one of the bins in the array above and outputs 
an array of bin indices that each value in the arrays corresponds to. The output for this example was: 
 
Ground truth: [ 6,  7,  1,  1,  1, 10,  1,  1,  6,  1]              Privatized: [ 7,  7,  1,  1,  1, 10,  1,  2,  6,  1] 
 
From the output above, it is evident that the rankings changed for two values with the privatization algorithm. 
To penalize this, we multiply a tunable penalty (in this case, we use 0.1) by the number of values whose 
rankings changed and add this to the JSD, MPP, and BP and evaluate the metric using the expression 1 - 
min(JSD + MPP + BP + RCP, 1). In this case, RCP = 0.2, so the total score for this data comes out to be 
0.43. This metric goes from 0 to 1, with 0 being unusable to 1 being a perfect match to the original 
dataset. To get a score for a dataset with multiple rows, this score is evaluated per row and then averaged 
over all rows. 
 
To explore the quality in time-series patterns, we turn to a simple curve-fitting score, the most well known 
of which is r_squared. In particular, for a dataset with both map and time segments, we group by the map 
segments and sum the values of the rows to get one value per time segment per map segment. Doing this 
for both the privatized and ground truth datasets yields a total count per time segment for multiple time 
segments for a particular map point. To demonstrate this, we created a random 10x12 matrix that we then 
added a 10x12 matrix of a small amount of noise to, in order to get a pseudo-privatized matrix. This 
represents a set of 10 categories over a span of 12 points in time for one particular map point. Summing 

along the x-axis for these 
matrices yields two 1x12 
matrices that in theory could be 
graphed to get a time-series look 
at the counts. For this particular 
example, the r_squared value 
turned out to be 0.95. For a 
dataset with many map points, 
this can be done for each and 
then averaged to get an average 
r_squared that can be used to 
determine the reliability of the 
time-series patterns in the 
privatized dataset.  
 
The accompanying visualization 

for this metric, a confusion matrix, shows the categorical reliability of the privatized dataset. Essentially, 
it reveals the number of misleading presences caused by the privatization algorithm. For the poor quality 
data provided for the challenge, the matrix looks like the figure shown above. 0 stands for a category with 
a count of 0, while 1 stands for a category with a nonzero count. As shown, there are many false positives 
and false negatives in that dataset.  



 

Real World Use Case 

Confusion matrices are often used in machine learning to quickly visualize the quality of the data output 
by an algorithm. That is very relevant to the current challenge, as it is important to be able to see how 
many misleading presences and misleading lacks in presence there are in the dataset. Having false 
positives and false negatives can greatly impact decision making in any sector so it is vital to be able to 
judge these aspects of a dataset.  
 

Metric Definition 
Technical Background 

Jensen-Shannon Divergence 
The Jensen Shannon Divergence is a way of measuring the distance between two probability distributions. 
The Jensen Shannon Divergence is a symmetric and finite version of the Kullback-Leibler divergence. In 
this metric, it will be used as a baseline distance between the ground truth and noisy datasets. This 
distance could be used on its own, however in this metric it is used in conjunction with a variety of other 
components to give a more comprehensive score to the data. This component was used in the pie chart 
metric created by Christine Task, Knexus Research Corporation Issac Slavitt, DrivenData Inc. More 
information about this and its implementation can be found here:  
 

● Scipy Jensen-Shannon documentation: 
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.jensenshannon.html 

● Statistical explanation of KL Divergence and Jensen-Shannon Divergence: 
https://medium.com/datalab-log/measuring-the-statistical-similarity-between-two-samples-using-j
ensen-shannon-and-kullback-leibler-8d05af514b15 

 
Confusion Matrix 
The confusion matrix is a very useful visualization for comparison of two datasets. Often used in machine 
learning to compare the true data with the model-predicted data, it provides an intuitive way of looking at 
errors in a binary classification. In the case of the data provided for this challenge, one thing we want to 
look at during the privatization process is the number of false positives and false negatives in the noisy 
dataset, as these errors can significantly change any inherent patterns in the dataset. In this metric, we use 
the confusion matrix as a way to visualize these errors simply by denoting nonzero values with 1 and 
creating a confusion matrix from the resulting data.  More information on confusion matrices and their 
implementation can be found in the following: 
 

● Seaborn heatmap documentation: https://seaborn.pydata.org/generated/seaborn.heatmap.html 
● Explanation of confusion matrices for binary classification: 

https://medium.com/towards-artificial-intelligence/confusion-matrix-what-is-it-e859e1bbecdc 
 



Formal Metric Definition 

In this section we provide a detailed definition of the confusion matrix metric in addition to steps for 
computation. This metric takes in two datasets: the ground truth dataset and the differentially private 
dataset. The structure of these two datasets should be that each row in the ground truth dataset should 
correspond to the same row in the privatized datasets. In addition, this metric is formulated to work only 
with datasets with counts of many events, as the rank change penalty and the misleading presence penalty 
would not work with datasets that have one event category and one count. In the toy example provided 
below, we show the structure of one record of the dataset that would work with this metric.  
 
Ground truth: [36, 41,  0,  0,  0, 58,  0,  0, 33,  0] 
 
The above shows the ground truth dataset. In the case of this challenge, it can be representative of the counts of 
10 incident types in one particular neighborhood for one month in one year. The incident type is represented by 
the index of the count in the array. Upon privatization of this dataset, the resultant record for the same 
neighborhood in the same month in the same year is 
 
Privatized: [40, 43,  6,  7,  1, 58,  0, 11, 34,  7] 
 
Each index in the array above still corresponds to the same incident type as in the ground truth data. In the case 
of this example, a very small amount of positive noise has been added to the ground truth array to shift the 
values in order to approximate what a real privatization algorithm would do. As can be seen, the values are 
only slightly different from the ground truth data, and patterns appear to be somewhat consistent. However to 
measure their similarity, we introduce a few components: the Jensen-Shannon Distance (JSD), the Misleading 
Presence Penalty (MPP), the Bias Penalty (BP), and the Rank Change Penalty (RCP). The first three 
components are taken from the pie chart metric created by Christine Task, Knexus Research Corporation 
Issac Slavitt, DrivenData Inc. These components are then used to evaluate the following expression: 1 - 
min(JSD + MPP + BP + RCP, 1), which will give a score for how well the category-based patterns in the 
data have been preserved. In addition to this, the data will also be scored on how well patterns over time 
have been preserved, however we will discuss this later on.  
 
The following details how to calculate the category-based score for the toy example given above: 
 

1. Zero insignificant counts and normalize the row: for each record, set any count less than some 
frequency threshold (FT) k% of the sum of all counts in that record (in our case we used 5%) to 
zero and normalize the record. 
 
The resulting records after this are:  
 
Ground truth: [ 0.21428571,  0.24404762,  0.,  0.,  0.,  0.3452381,  0. ,  0.,  0.19642857,  0.] 
 
Privatized: [ 0.21505376,  0.2311828 ,  0.,  0.,  0.,  0.31182796,  0., 0.05913978,  0.1827957,  0.] 
 

2. Calculate the Jensen-Shannon Distance: for computation of this, we used the Jensen-Shannon 
function in the Scipy package with the ground truth record, privatized record, and base = 2 as 
parameters. The output of this came out to be 0.60. 



 
3. Calculate the Misleading Presence Penalty: add a penalty to the Jensen-Shannon distance every 

time there is a nonzero count in the privatized data that is zero in the ground truth data. This is 
essentially penalizing for false positives. In our example, there is only one category with a false 
positive after privatization. We set our penalty (MPP) to be 0.2*number of false positives, so this 
comes out to be 0.2. 

 
Ground truth: [ 0.21428571,  0.24404762,  0.,  0.,  0.,  0.3452381,  0. ,  0.,  0.19642857,  0.] 
 
Privatized: [ 0.21505376,  0.2311828 ,  0.,  0.,  0.,  0.31182796,  0., 0.05913978,  0.1827957,  0.] 
 
The highlighted values show the false positive.  
 

4. Calculate the Bias Penalty: this is essentially adding a penalty (BP) (in our case 0.25) if the sum 
of the counts in the privatized dataset is more than a threshold value (BPT) (in our case we used 
500) larger than the sum of counts in the ground truth data. In our example, there was no such 
difference so this value comes out to be 0. 
 

5. Calculate the Rank Change Penalty: this component penalizes a change in ranking between 
categories. Essentially if a certain incident type had the largest count in the ground truth record 
but was overtaken by another incident in the privatized data, we add in a penalty of 0.1 every time 
this occurs. The way to accomplish this is to create a certain number of bins (B) that will 
encompass all of the count values (in our case we created 10) and multiplied the penalty by the 
number of values that changed bins. In the case of our example above, there are 2 bin changes so 
the RCP comes out to be 0.2.  
 
These are the bins we created for this example:  
Ground truth bins: 
[0.0, 0.04], [0.04, 0.08], [0.08, 0.12], [0.12, 0.15], [0.15, 0.19], [0.19, 0.23], [0.23, 0.27], [0.27, 0.31], 
[0.31, 0.35], [0.35, 0.38] 
 
Privatized bins: 
[0.0, 0.03], [0.03, 0.07], [0.07, 0.1], [0.1, 0.14], [0.14, 0.17], [0.17, 0.21], [0.21, 0.24], [0.24, 0.28], 
[0.28, 0.31], [0.31, 0.35] 
 
The indices of the bins each count is in: 
Ground truth: [6, 7, 1, 1, 1, 10, 1, 1, 6, 1] 
Privatized: [7, 7, 1, 1, 1, 10, 1, 2, 6, 1] 
 
The highlighted values show that two of the counts changed bins, which shows that their values 
changed by quite a bit.  
 

6. Evaluate the final expression: we plug in all of our values calculated above into the expression 
1 - min(JSD + MPP + BP + RCP, 1). This expression outputs values between 0 and 1, with 0 
indicating a completely different dataset and 1 indicating a perfect match. The score for our 
example is 0.43, indicating that while many patterns have been preserved, some have been lost.  



 
In the real use-case where we have two large datasets with multiple rows of similar nature to the example 
above, the expression is to be calculated for each row and then averaged to give an overall score for the 
entire dataset.  
 
The second portion of this metric is the time-series evaluation, which is contingent upon a continuous 
time component being present in the dataset. In the case of this challenge, the dataset has the record 
counts and the neighborhood as mentioned earlier along with a month and a year. In our example, we look 
to preserve the pattern over the course of a year, so we sum the counts for 12 months and fit the privatized 
curve to the ground truth curve and calculate the r-squared value. In the case of our example, we provide 
12 records to show how things look for one neighborhood over the course of a year: 
 
Ground truth: 
[[51., 18., 80., 40., 42., 34., 49.,  8., 24.,  5.], 
       [74., 28., 26.,  1., 14., 32., 20., 90., 87., 66.], 
       [13., 89., 34., 39., 24., 70.,  7., 22., 36., 57.], 
       [33., 10., 44.,  4., 98.,  5., 50., 41., 36., 90.], 
       [74., 80., 49., 96.,  8., 44., 95., 50., 91., 52.], 
       [ 6., 36., 46., 94., 89., 94., 30., 57., 73., 82.], 
       [49., 58., 22., 75., 75., 53., 95., 12., 14., 78.], 
       [64., 20., 50., 35., 64., 85., 57., 71., 81.,  6.], 
       [36., 41.,  6.,  7.,  0., 58.,  0.,  9., 33.,  0.], 
       [91., 49., 68., 81., 78., 74., 36.,  8., 96., 22.], 
       [99., 38., 83., 98., 96., 76., 85., 45., 74., 96.], 
       [82., 23., 77., 75., 49., 76., 29., 30., 34.,  8.]] 
 
Privatized:  
[[ 53.,  24.,  83.,  44.,  48.,  37.,  51.,  11.,  26.,   7.], 
       [ 77.,  28.,  28.,   5.,  21.,  33.,  23.,  92.,  88.,  68.], 
       [ 16.,  93.,  41.,  43.,  27.,  70.,   8.,  24.,  36.,  57.], 
       [ 35.,  16.,  45.,   6., 107.,   6.,  51.,  54.,  37.,  91.], 
       [ 76.,  80.,  49.,  97.,  15.,  46., 101.,  51., 101.,  54.], 
       [  6.,  36.,  48.,  98.,  92.,  94.,  39.,  57.,  80.,  85.], 
       [ 55.,  59.,  23.,  81.,  81.,  57., 104.,  21.,  20.,  80.], 
       [ 70.,  26.,  59.,  45.,  70.,  86.,  62.,  74.,  84.,  11.], 
       [ 40.,  43.,   0.,   0.,   0.,  58.,   0.,  11.,  34.,   0.], 
       [ 96.,  53.,  70.,  81.,  83.,  76.,  38.,  11.,  98.,  26.], 
       [102.,  42.,  85., 103.,  96.,  78.,  85.,  46.,  76.,  98.], 
       [ 83.,  23.,  82.,  76.,  60.,  76.,  34.,  35.,  34.,   9.]] 
 
In order to get an r squared value, we first sum each vector in the matrix and plot the resulting curve for 
both sets. Then we fit the privatized data to the ground truth data and calculate r squared. In the example 
above, r squared is 0.95. This value is generally between 0 and 1 with 0 being a horizontal line and 1 being a 
perfect fit, however it can in some cases be negative if the fit is bad enough. Our value shows that the 
privatized data maintains the patterns of the ground truth dataset well. For a dataset with multiple 
neighborhoods and years, the r squared value will be averaged across all to get one score.  
 



Explanation of Metric Parameters 

In this section, we go over all of the parameters involved in this metric. The first subsection details the 
parameters required for the metric to work, and the second subsection details the parameters that can be 
adjusted to change the output of the metric accordingly. 
 
Data Configuration Parameters 
 
Record Configuration 
This metric takes in a dataset with the structure of a set of counts across multiple categories for each map 
and time segment. This has to be the configuration in order for this metric to be effective in the spatial 
component. The main reason for this is that the Misleading Presence Penalty and Rank Change Penalty do 
not work unless each record corresponding to a particular map and time segment has more than one value, 
otherwise the penalties become extremely large. However, in the case of the time segment, the only two 
things necessary are any time component and any other value. In the case of datasets with demographic, 
neighborhood, and other factors for which the record type is not numerical, penalties will have to be 
adjusted based on the “difference” between each value type in the particular category. 
 
Tunable Parameters 
The default values for the components taken from the pie chart metric created by Christine Task, Knexus 
Research Corporation Issac Slavitt, DrivenData Inc are also taken from this metric.  
 
Frequency Threshold (FT) 
In order to minimize unnecessary penalty, this metric first zeroes values that are “insignificant” in the 
record. The FT basically zeroes all values in the record that do not make up at least k% of the record total. 
The smaller k gets, the more the metric discriminates. However, this may not always be a good thing, as 
the larger the penalty gets the more large patterns that may have been preserved during privatization get 
overshadowed. Therefore, the penalty may not be indicative of how useful the dataset could be. In the 
above walkthrough, k=5. 
 
Misleading Presence Penalty (MPP) 
This component of the metric penalizes the data for false positives, which occur when a category has a 
value of zero in the ground truth data but is nonzero after privatization. The amount it penalizes can be 
changed. In the above walkthrough, it has been set to 0.2*the number of false positives in the record. A 
more detailed penalty that penalizes extra based on how much larger than zero the false positive is will be 
discussed below as the Rank Change Penalty. 
 
Bias Penalty Threshold (BPT) 
In addition to false positives, the addition of too much noise can alter the sum of all values in the record 
by so much that the data could be rendered useless. For this case, we introduce the bias penalty. This 
component penalizes the data if the record count for the ground truth data is BPT (bias penalty threshold) 
away from the record count in the privatized data. In the walkthrough above, we use BPT=500. The lower 
the value, the more harshly it penalizes an epsilon value that is too small.  
 
Bias Penalty (BP) 



The amount that the metric penalizes for going above the BPT is the BP. The larger BP gets, the more 
harshly the metric penalizes for the epsilon value being small. In addition, this will penalize very harshly 
if there are many zero values and man categories in the ground truth dataset. In the walkthrough above, 
we set BP=0.25. 
 
Bins (B) 
The component that penalizes the data for significant changes in ranking is known as the Rank Change 
Penalty (RCP). In this component, we create bins that encompass all of the values in the record, and keep 
track of which category value falls into what bin. If the bin for a category changes after privatization, we 
add on a penalty. The number of bins for this is a tunable parameter. In the walkthrough above, we use 
B=10. As the number of bins increases, the more harshly the component penalizes changes, as the bin 
sizes become smaller and therefore more sensitive to small changes in value with noise.  
 
Rank Change Penalty (RCP) 
This component utilizes (B) above in order to penalize significant changes in the ranking of the category 
counts in a record. For example, if a certain category is the most frequent, and another is far less frequent, 
the RCP will penalize if the two are swapped. As mentioned above, the more bins are used the more 
harshly this component penalizes for changes in value. In order to compute the penalty, we multiply the 
number of values whose bins changed by 0.1. This is also a tunable value, and the larger it gets the more 
sensitive this component gets to value changes by noise.  
 
Time Segment  
The only tunable parameter that the time-series component of this metric takes in is the number of 
months/time segments to sum over. In the above walkthrough, for one neighborhood we sum values for 
each month and then plot those values for 12 months and fit the curves. The number of time segments is a 
tunable parameter, and the more points that get plotted and fit the more accurate the fit is likely to be, as r 
squared generally tends to be larger as the curve gets smoother which occurs with more points. 
 

Snapshot and Deep Dive  

This section details how the metric can be used either to give one overall score or to create visualizations 
that show details of the patterns in the data.  
 
Snapshot 
This metric has two components: a categorical or spatial component, and a time component. The 
categorical/spatial component is reliant on the data having multiple categories with counts in each and 
gives a score between 0 and 1, with 0 being an unusable dataset and 1 being a perfect match. The time 
component is essentially a best fit analysis, and gives an r squared score for the data over a segment of 
time. This part is usually between 0 and 1 but in cases of really bad fitting can be negative. To get an 
overall score for a complete dataset, an average of the scores can be taken. This can be done for both the 
categorical and time components.  
 
Deep Dive  



This metric can also be used to look at specific parts of the data in order to get a more specific 
comparison. The below visualizations show some examples of how the data can be looked at in order to 
get a deeper view. 
 

One good way to get a gauge on 
how well the privatization 
algorithm preserved patterns in 
the data is to use a confusion 
matrix. For a deeper dive into 
the data, a confusion matrix can 
be made for each neighborhood 
to show if certain 
neighborhoods tended to have 
more false positives and false 
negatives than others. This 
could show a pattern between 
what neighborhoods tend to be 
more harshly altered by the 
privatization algorithm than 
other neighborhoods.  

 
Another visualization we can use to take a deeper look into the time aspect of the data is the interactive 
fitting visualization. This particular visualization makes use of the time component in the records and 
shows what kind of fit there is 
between the incidents over the 
course of  a year. This shows 
another way to calculate the 
time component of this metric: 
to calculate the r squared over a 
year for each incident and then 
average all of the incidents. As 
can be seen from this particular 
visualization, some fits are 
decent, while others are quite 
different. In addition as the 
amount of noise varies, the shift 
in the incident counts becomes 
extremely large,  however 
looking at the overall pattern in 
this way can help with 
discerning whether or not some 
pattern was preserved after 
privatization. From this it can 
also be seen that depending on the amount of noise, in order to get an r squared value that measures solely 



the pattern fit it may be necessary to add an amount to the ground truth data in order to get it close to the 
privatization data.  

Metric Defense 
Exploration of Parameter Tuning 

Data 
The dataset used for this metric is the 2019 Baltimore police incident dataset provided by the challenge. 
This data has two levels of noise added to it: epsilon = 0.5 for the poor quality dataset and epsilon = 4 for 
the mediocre quality dataset. Smaller epsilon indicates more noise. The dataset is of the structure of a few 
time components, at least one spatial component, and multiple categories with counts.  
 
Metric Parameters 
All metric parameters in the above walkthrough use the default values mentioned in the explanation of 
metric parameters section above.  
 
Score Composition 
This metric is split into two large components: the categorical/spatial component and the time series 
component. The first component is made up of the JSD, MPP, BP, RCP. The second component is made 
up of only r squared.  
 
In the case of the categorical/spatial component, the score composition changes quite a bit depending on 
the level of noise added to the data. For epsilon=0.5, which has more noise added to it, we can see that the 

majority of the score is 
determined by the misleading 
presence penalty. Essentially 
this shows that there are lots of 
false positives and false 
negatives (instances of a 
category having a nonzero 
value after privatization 
despite having a zero value 
before) in the privatized 
dataset. In addition, we are 
also seeing some occurrence of 
bias penalty being added, 
which shows that there are a 
few instances wherein the 
record total after privatization 
is 500 more than the ground 

truth dataset. The default value of 500 is already extremely large and it shows that there is an almost 
unusably large amount of noise added to this data. The rank change penalty makes up the next largest 
portion, which is also the case in the mediocre quality data. 



 
The score composition for the mediocre quality data (epsilon=0.5) is largely composed of the 
Jensen-Shannon Distance. In addition, there are definitely far fewer false positives in the mediocre quality 
dataset in comparison to other differences, so the misleading presence penalty makes up a very small 
portion of the score. The rank change penalty however has stayed the same and makes up a decent portion 
of both scores, which could be a sign that given the default number of bins used (10), there is a large 
amount of value change going on regardless of noise. This could also be because the penalty does not 
scale with how much the value changed, which can be adjusted later on. 
 
In the case of the time component, it can be seen by the plots below that the added noise changes the 
pattern across time quite significantly. If two graphs have any amount of correlation, usually the r squared 
value is going to be between 0 and 1. However, in this image it can be seen that there is a large number of 
negative values that are present, which indicates that the fits are even worse than a fitting with a 
horizontal line. The method of averaging done for this example is done by grouping the dataset by 

months, fitting each incident, and averaging the r squared values over all of the incidents. As can be seen 
from these images, the privatization algorithm alters the fitting by quite a bit, as there are quite a few r 
squared values below zero. In the case of epsilon=0.5, the smallest r squared value is -500000 which is 
already quite bad, however in the poor quality dataset (epsilon=4) the lowest value is -3.5e7 which is 
extremely low. However, it is evident that these scores are not necessarily reflective of the overall 
preservation of the pattern as can be seen by the second figure in the deep dive section. This figure shows 
the plot for incident 53 from both the mediocre quality and ground truth datasets and it appears as though 
they both have a somewhat similar shape. However upon looking at the y-axis, it is obvious that the bad r 
squared scores are due to the grossly large shifts in values, as the maximum value in the ground truth 
dataset is 270 while in the mediocre quality dataset it is 8000. In order to get the r squared value to weight 
pattern more than shift, it may be necessary to shift the values of one of the datasets to somewhat match 
the other.  
 
Tuning the Bins 
We now explore the effects on the rank change penalty of altering the bins from their default amount (10 
bins). In addition, we will discuss two ways of binning that may impact scoring of the data as well. 
 



The method of binning used in the 
walkthrough above involves first 
zeroing “insignificant” values and 
normalizing the record, which 
leads the maximum possible value 
of the data to be 1.0. Our default 
number of bins is 10, however we 
get very different results if that 
number is changed. From the 
images to the left, it is evident that 
the number of differences in 
values increases as the number of 
bins is increased.  
 
All of the images depict the 
incident landscape in 
neighborhood 0 on January 2019. 
The topmost image shows a 
histogram of incident values with 
15 bins. Looking at the image, we 
can see that the poor quality 
dataset’s bars (green) vary 
significantly from the ground truth 
dataset (blue) while the mediocre 
quality dataset’s bars (red) are 
much closer to the ground truth 
data. There are 7 different bars for 
the poor quality dataset that differ 
from the ground truth, thus there is 
more penalty to be added to that 
dataset. In contrast, in the middle 
image, which uses 10 bins, there 
are only 5 poor quality dataset bars 
that differ from the ground truth 
dataset, which will decrease the 
penalty significantly. In a similar 
fashion, for the histogram with 
only 5 bins, it can be seen that the 
number of poor quality dataset bars 
that differ from the ground truth is 
only 3, and so the penalty is 
decreased there as well. 
Essentially, as the width of the 
bins increases, the chances for 
noise addition to cause values to 



change bins become smaller. From these images, we can see that depending on the use case, the bins can 
be adjusted according to necessity. For instance, if only extremely large changes in value are to be 
penalized, then the number of bins can be decreased in order for the metric to be of better utility for that 
situation.  
 
Time Series Averaging Method 
One additional interesting property of this metric is that it can change utility depending on the method of 
aggregation. Our default is to average the results across various segments, however the method of 
averaging can also play a role in how the metric scores the data. The component that is most significantly 
affected by this is the time-series component.  
 
There are two different methods with which we can average across fitted data. One method is to group the 
data by month and sum all of the incidents individually across the months, fit each incident column to the 
ground truth data and average the r squared across all incidents. This method seems to produce the worst r 
squared values. This is also the method used in the walkthrough section of this paper. Using this method, 
the average r squared value of the poor dataset is -1,604,000, which is extremely low. The average r 
squared value of the mediocre dataset is -24,742, which is also extremely low but not anywhere near the 
poor quality dataset. These extreme values could be attributed to the fact that they are reliant on how the 
values of each incident have been changed, as we plot the behavior of the total number of a certain type of 
incident over the course of a year. It could be said that the privatization algorithm harshly affects the 
pattern of the total count per incident. 
 
By contrast, the method that averages total counts by neighborhood produces results that are not nearly as 
low as the method above. This method sums all incidents per neighborhood and calculates the r squared 
value. The r squared is then averaged across all neighborhoods. With this method, the r squared value for 
the poor dataset is -53,142, which is not nearly as low as in the previous method. Similarly, the r squared 
value for the mediocre dataset is -790 which is a large improvement on the score from the previous 
method. It suffices to say that all of these r squared values are quite bad, however as discussed earlier, a 
lot of this is attributed to the large shift in values and may not be reflective of whether or not the overall 
pattern was preserved.  
 
Further Questions 
In addition to what was addressed, there are many other aspects to this metric that could be analyzed. 
Some of these are: 

● How does the metric penalize large changes in value as the RCP number changes? How can the 
penalty be altered to reflect the size of the change? 

● Is averaging all of the results the best way to go about getting a unified score for the metric? Is 
there a better way to aggregate the results? 

● Is there a way to combine the time series portion and the spatial portion of this metric in a way 
that effectively reflects the quality of the data? 

● How can this metric be altered to better serve a specific purpose? For instance, if a user values the 
overall pattern in the time series more than scale, how can the metric give a score meaningful for 
this case? 

● How does the metric score datasets that have extremely sparse values? Can it still give a 
meaningful score despite the high likelihood of false positives? 



● How does this metric score data with very few categories? Currently the dataset it was tested on 
had 173 individual categories, does it get more or less accurate as this number decreases? 

 

Description of Discriminative Power 

How well does this metric distinguish between the ground truth dataset and the privatized dataset? 
  
Capabilities 

● This metric penalizes large value changes of one category in comparison to other categories in the 
same map-time segment (it prioritizes ranking). 

● This metric has the capability to score datasets in how well they preserve time-series patterns. 
● This metric penalizes false positives in the privatized data, so in the case that it is necessary to 

have data with mostly true values this metric will be very useful. 
● This metric captures the level of added noise well in its scoring. 
● This metric penalizes shifts in values that are large enough to render the dataset useless if the use 

case is reliant on specific values in the dataset. 
 
Limitations 

● This metric currently does not have a way of comparing only the shapes of the time-series curves 
while ignoring large shifts in value. 

● The metric may penalize false positives too harshly depending on how small the value change is 
in comparison to the rest of the record. 

● This metric has two separate components: the map segment and the time segment. They are not 
combined to give one score. 

● The metric’s rank change penalty gives one penalty regardless of how large the value change is, 
which could be detrimental when there are not very many bins. 

● This metric does not currently have a way to score for machine learning and other types of 
processes that are affected by noise in different ways. 

 

Description of Discriminative Power 

How well does this metric cover a variety of possible use cases? 
 
Capabilities 
 

● The confusion matrix is an intuitive way to quickly visualize the quality of the data from a binary 
classification perspective. It allows the user to quickly see what proportion of the data after 
privatization resulted in false positives and false negatives and what proportion remained the 
same. 

● The metric gives a somewhat accurate reflection on how well the overall spatial/categorical 
patterns have been preserved after privatization due to its use of the various components. 

● The time component in the metric is highly discriminative, so in the event that the metric needs to 
reflect how well the privatization algorithm preserves both scale and overall shape of the curve, 
the score will be accurate. 



● For the case that the metric be used for only one of the components (either spatial/categorical or 
time), the scores will reflect according to necessity since the two components are not combined. 

 
Limitations 

● In the case that the metric be used for only detecting overall time-series pattern preservation, in its 
current state it will come up short as r squared penalizes heavily for large changes in scale. In this 
case, a correlation coefficient may be of more use. 

● In the case that a user may want one score for each dataset, the metric currently does not allow for 
that as it does not combine the spatial and time components into one score 

● This metric currently does not accommodate datasets with non-numerical values very well, as the 
rank change penalty is heavily reliant on numerical binning. In addition, r squared cannot directly 
be computed on non-numerical data. 

●  For datasets with sparse values and/or very few categories, the metric may penalize too harshly 
for inconsistencies as a lot of the metric is reliant on relative changes within each record 

 

Scalability 

This metric was evaluated on multiple 3336 x 178 datasets on an average computer and took a few 
seconds to run. The time component ran in very few seconds, while the categorical component took a 
couple of seconds longer likely due to the binning process.  
 

Generalizability 

This metric can also be applied to the following cases: 
● The categorical component of the metric can be used to evaluate patterns in datasets outside of 

the police data, including record types such as poverty, demographic, sex, and education. 
● The time component of the metric can be used to score financial data as well, including income 

earned and income total. 
● By adjusting the bins in the rank change penalty, the metric can be used to score value changes in 

all of the categories mentioned above. 
 
 
 


