
MGD: A Utility Metric for Private Data Publication

Ninghui Li, Zitao Li, Trung Dang, Tianhao Wang
Team DPSyn, Purdue University

{ninghui, zitaoli, dang28, tianhaowang}@purdue.edu

1 Executive Summary

1.1 Metric Overview

We propose MarGinal Difference (MGD), a utility metric for private data publication. MGD assigns a difference
score between a pair of datasets 〈DS , DT 〉, where DS is the synthesized dataset, and DT is the ground
truth. The high level idea behind MGD is to measure the differences between many pairs marginal tables,
each pair having one computed from DS and one from DT . For measuring the difference between a pair
of marginal tables, we introduce Approximate Earth Mover Cost (AEMC), which considers both semantic
meanings of attribute values and the noisy nature of the synthesized dataset. While the current challenge
focuses on temporal map data, MGD is designed for relational datasets in general, and can be naturally applied
to temporal map data.

Design Desiderata . To turn the high-level idea of measuring differences between marginal tables into a
concrete metric, we need to specify the following: which marginal tables are used in computing the score,
how to measure the differences between two marginal tables, and how to combine these measurements into
one score. We use the following design objectives to guide our choices for fleshing out the details of MGD.

• Flexibility. The set of marginal tables and their weights in deciding the final score can be configured.
Under the constraints of Difference Privacy (DP), one cannot preserve all distribution information
in the input dataset. Fortunately, it is often unnecessary for a synthetic dataset to preserver all
distributions for it to be useful. Oftentimes not all distributions are equally important; however, the
relative importance among different distributions, when they exist, cannot be determined without
considering the attributes in the datasets and the application domain.

• Balancing Flexibility with Ease of Use. To provide flexibility, a metric needs to have configurable
parameters; however, this may make a metric difficult to use. We solve this problem in two ways.
First, instead of making everything configurable, we fix some aspects of the metric when we believe
doing so preserves sufficient flexibility. Second, for almost all parameters, we provide default values
that we hope would work for most application scenarios.

• Accommodation of Numerical Attributes. For attributes with numerical values, we want to take into
consideration of the natural semantic distance between values. For example, for an age attribute, 19
is not very different from 20, but is very different from 90, and treating them just as three different
values loses this semantic meaning.

• Accommodation of Structured Attributes. For many categorical attributes, the semantic meanings also
suggest natural semantic distances between values. The metric should be able to use these semantic
meanings when the application domain can benefit from doing so.

• Awareness of Noises. Under DP the data are noisy, and it is understood that small differences cannot
be relied upon. The metric should reflect this, avoiding being dominated by many small differences.

Parameter of the MGD metric . The metric is parameterized by the following.

• Data Schema. This specifies what attributes are in the dataset, the domain of possible values for each
attribute, and any relationships between the values. At the minimum, it should be clear whether
each attribute is ordinal or not, and what are the set of values that can be taken for each attribute.
Optionally, one can also provide generalization hierarchies for these attributes.

• Target Marginal Schemas and Weights. This includes a set of marginal schemas where each schema
specifies the attributes to be included. One applies each schema to DS and DT to obtain marginal
tables, and computes the AEMC score between the two resulting marginal tables. The final score is the
weighted average of these AEMC scores, where the weights are equal by default, but can be configured
if one wants to.

Approximate Earth Mover Cost (AEMC) between Two Marginals . For measuring differences between
two marginals, commonly used metrics include L1, L2, KS divergence, Jensen-Shannon distance, and so on.
However, these metrics do not take into consideration of the underlying semantic distances between the
values. The desire to use semantic distance values naturally led us to the earth mover’s distance (EMD).
Informally, if two distributions are interpreted as two different ways of piling up a certain amount of dirt
over the region, the EMD is the minimum cost of turning one pile into the other, where the cost is assumed
to be the amount of moving dirt times the distance by which it is moved.

We adapt EMD in three ways, to be more suitable for our purpose, and call the result AEMC. First, instead
of normalizing the margainal tables into probability distributions (i.e., all entries sum up to 1), we first use
the unnormalized record counts to compute a score so that the absolute number of records also conveys
information. The AEMC is obtained by dividing this score with the total number of records in the ground
truth dataset. Second, in addition to moving counts from one bin to another, we also allow adding/removing
counts directly. This helps deal with unequal total counts between the two datasets, and also make the
metric a generalization of the L1 distance between two marginal tables. Third, the earth moving does not
need to get the two marginal tables exactly the same, but only so that the difference is below a threshold ∆.
This avoids penalizing small differences in the counts. Without this feature, the score between two marginal
tables can be dominated by cells that have small values when there are many such cells.

AEMC can be computed either by formulating it as a linear program, and using generic linear programming
solver, or by formulating it as a flow problem in graphs and adapting existing algorithms to compute it.
We have implemented both approaches, and provide the details in the Appendix. Experiments show that
modeling AEMC as a flow problem results in a fast computation for fairly large marginals.

1.2 Real World Use Cases

We consider two example use cases. Here we describe, for each case, the datasets and the desired information
that one wants to capture in the metrics. In Section 3, we show how these objectives can be achieved by
using suitable configurations of MGD.

Example 1. Police Incident Data. For our first example, we consider the dataset used in Sprint 1 of
the current NIST Challenge, namely Baltimore 911 Call and Police Incident Data. There sample dataset
in the contest has three attributes: time (12 months), neighborhood (278 values), and incident type (174
values). One can envision the following types of information that one wants to extract from the data.

• Per neighborhood-month distribution of incident types. This is what the pie-chart metric used in
Sprint 1 tries to measure. Conceptually, the dataset is first partitioned into 12 × 278 = 3336 parts
(one for each month and neighborhood), and for each part the distribution over the 174 incident type
is compared to the ground truth.

• Per neighborhood total incidents over time. Here we assume that one is only interested in how the total
number of incidents (aggregating over all incident types) changes over time for each neighborhood.

• Distribution of certain types of incidents over neighborhoods. This may be helpful for determining
whether adequate resources are available to handle incidents of certain types. When there exists mean-
ingful distance data between neighborhoods, e.g., based on travel time or on organizational hierarchy,
such information can be used in computing MGD.

2

Example 2. PUMS Data. For our second example, we use the dataset used in Phase 3 of the 2018-
2019 Differential Privacy Synthetic Data challenge, the Public Use Microdata Sample (PUMS) of the 1940
USA Census Data for the State of Colorado, fetched from the IPUMS USA Website. The dataset has 98
attributes. In the challenge, three metrics were used.

• Density Estimation. For this metric, the scoring algorithm randomly samples 300 marginal schemas,
each with three randomly chosen attributes. Then for each marginal schema, it computes the nor-
malized marginal tables from the synthetic dataset and from the ground truth dataset, and then uses
the L1 distance between the two marginal table as the penalty. We will show how un-normalized L1

distance, which is highly correlated with normalized L1, can be specified in MGD.

• Range Query. For this metric, the scoring algorithm randomly samples 300 range queries and assesses
the accuracy of using the synthetic dataset to answer these queries. To generate a range query, one
first randomly samples a subset of attributes, with each attribute having 33% chance to be selected.
Then, for each selected attribute, a query condition is randomly generated. This cannot be directly
implemented using MGD; however, accuracy for range queries is highly correlated with scores computed
from low-degree marginals.

• Gini Index and Rank Accuracy. The two scores are calculated based on the columns named SEX and
INCWAGE (income wage) for each city in the dataset. The first score component is based on the
mean-square deviation between Gini indices obtained for the original and the synthesized dataset,
averaged over the cities in the original dataset. For the second score component, one ranks the cities
by the gender pay gap, and calculates the mean-square deviation between the resulting city ranks in
the original and privatized datasets. This is highly correlated with accuracy on the 3-way marginal
over CITY, SEX, and INCWAGE.

2 Definition of the MGD Metric

2.1 Technical Background

Earth Mover Distance (EMD). In statistics, EMD measures the distances between two probability
distributions. EMD has been considered as an useful tool in computer vision area for the tasks including
image retrieval [3], feature matching [4], and face verification [10]. In recent years, EMD is also widely
used in deep learning models, such as generative adversarial network (GAN) [2, 5, 6]. EMD is also used in
document similarity analysis [7] on high dimensional and sparse Bag-of-words vectors.

More formally, EMD takes P and Q, each being a size T vector of non-negative values such that the sum
over each vector is 1. Let M be a matrix of size T × T in which Mij ≥ 0 is the cost of moving an element
from the ith position to the jth position (Mii = 0 for all i values). The standard EMD is defined as:

min
X

∑
i,j

XijMij s.t. ∀i,
∑
j

Xij = Pi ∀j,
∑
i

Xij = Qj , ∀i, j,Xij ≥ 0

Intuitively, Xij gives the amount one moves from the ith element to the jth element. EMD can be easily
extended to vectors that are not probability distributions. There are also extensions to EMD that accom-
modate the situation where the sum of elements in P and the sum of elements in Q are different, either by
allowing free disposal of excess quantities, or introducing cost for adding/removing values. We use the latter
approach in our proposal.

Linear Programs (LP). Linear programming is a technique used to optimize linear objective functions
subject to linear equality and linear inequality constraints. One of the most canonical application of linear
programming is solving network maximum flow problem. Also, it can be applied on regression problems
and linear classification problems. Computing EMD is a special case of linear programming problem. There
exist software packages that can solve large LP instances reasonably fast.

Flow Algorithms. EMD can be computed by solving an instance of the transportation problem, using
any algorithm for minimum cost flow problem, e.g. the network simplex algorithm. Since such algorithms

3

exploit the specific nature of the transportation problem, they are faster than using LP solvers for the same
problem size.

Additional Resources. Any software package that can solve linear programming problems can be used
to calculate EMD and the new metric we proposed in this document. There are both open sourced and
commercial packages. With Python, there are CVXOPT and CVXPY, both of which are open source library that
can be used to solve linear programming problems. CPLEX, a the commercial package developed by IBM,
is another choice to solve the optimization problem. To accelerate the computation of AEMC, we reduce the
problem to a special kind of min-cost problem and use OR-Tools solver (ortools python package) to solve
the problem.

2.2 Formal Definition of AEMC

AEMC extends EMD in a few ways, to be more suitable for our purpose. More formally, AEMC is parameterized
by two parameters: (1) M is a T ×T matrix where each cell Mij is the distance between the i-th bin and the
j-th bin. It is required that Mij ∈ [0, 1]∪{∞} and ∀i Mii = 0. Setting Mij =∞ means prohibiting moving
from bin i to bin j. And (2) ∆ > 0 is a threshold such that differences between ∆ are tolerated. AEMC is
applied to a pair of size T marginals P and Q, where each cell corresponds to a count in the marginals. We
view P and Q as two vectorized/flattened marginal tables of size T × 1. P denotes the marginal computed
from the synthesized dataset, and Q the one computed from the ground truth. AEMC is defined as:

AEMCM,∆(P,Q) =
1

||Q||1
min
X

∑
i,j

XijMij +
∑
j

max

{∣∣∣∣∣∑
i

Xij −Qj

∣∣∣∣∣−∆, 0

}
s.t. ∀i,

∑
j

Xij = Pi (1)

Here ||Q||1 is the L1 norm of Q, i.e., the sum of all components in the vector Q. The factor 1
||Q||1

normalizes the score so that it is independent from the total number of records in the dataset. Intuitively,
each movement scheme is specified by a T ×T matrix X, such that Xij gives the amount of moving from bin
i to bin j. The condition

∑
j Xij = Pi says that the total amount of quantity moving from bin i (some of

which can be to itself) is exactly Pi. We want to minimize the cost, which has two components. The first one,∑
i,j XijMij , is the cost of moving. Here we define 0 ·∞ to be 0; thus when Mij =∞, the corresponding Xij

should be 0 to minimize the above formula. The second one,
∑
j max {|

∑
i Xij −Qj | −∆, 0}, computes the

penalty where the result after moving still differs from the ground truth Q. When the difference is below a
threshold ∆, the penalty stays at 0. However, when the difference is above ∆, the part above ∆ is penalized,
representing the cost of adding/removing counts.

When Mij = ∞ for all i 6= j, and ∆ = 0, AEMCM,∆ approximates the L1 distance. When P and Q are
the same, or when their L∞ distance is ≤ ∆, the AEMC between them is 0.

2.3 Parameters and Configurations for MGD

The MGD metric has the following parameters. While there are many parameters that can be configured, we
list the default choices for almost all of them.

2.3.1 Data Schema

Any dataset needs accompanying data schemas for it to make sense. To apply MGD, we require that for each
attribute, the following information can be extracted from the data schema.

• IsOrdinal. Whether the attribute is ordinal or not, i.e., whether there is a linear ordering among all
values.

• Domain D. The set of all possible values for this attribute.

• Generalization Hierarchy H. A rooted tree such that:

– There is one-to-one correspondence between the leaves and each value in the domain D.

4

(a) Generalization hierarchy of attribute “incident type” in 2019 Baltimore 911-Call and Police Incident data

.

(b) Generalization hierarchy of cities in United States

.

Figure 1: Generalization hierarchy of categorical attributes
.

– All leaves are at the same depth (same distance from the root).

– If an attribute is ordinal, the nodes at each level should appear (from left to right) in the order
of small to large.

Whether an attribute is ordinal or not and its domain are usually determined by the nature of the dataset.
When an attribute does not have an explicitly specified generalization hierarchy, we use a default hierarchy
that has two levels, where all values in the domain are the leaves, and there is one single root value. Allowing
Generalization Hierarchies serves several purposes. First, they can be used to capture semantic distances
among values in non-ordinal attributes. Second, they allow one to use marginals that involve attributes with
many values while keeping the marginal size feasible. One can use generalized values for the attributes that
have large domains. Third, for similar reasons as above, they enable marginals that involve more attributes.

Semantic Distance. Given a generalization hierarchy, we define the level of a node as the number of
edges on the path from the node to the root. Thus the root has level 0, and the root’s children have level 1,
and so on. Whether an attribute is ordinal or not and its generalization hierarchy together fully determine
the Semantic Distance function sd, which assigns a real value between 0 and 1 to each pair of nodes in the
same level. For an ordinal attribute, when a level has k > 1 values, the distance between the i-th and the

j-th value at that level is |j−i|k−1 . For two values of a non-ordinal attribute at level t, let s be the level of the

lowest common ancestor of the two values, then the distance between the two values is defined to be t−s
t .

Note that for any attribute in a marginal, only values from one specific level can appear, and we thus only
need semantic distances between values at the same level. The definition normalizes the distances to be in
[0, 1] no matter which level is used.

Figure 1 shows two categorical attribute examples in generalization hierarchy structure. Figure 1a shows a
default generalization hierarchy that has only two levels. The semantic distances between any two values, for
example sd(“Armed Person”, “Bike Theft”), are all 1. Figure 1b shows the case that a categorical attribute
has a customized hierarchy. Thus, the distance between any cities in the same state is 1

2 ; the distance
between any cities in different states and the distance between two states are both 1.

Figure 2 shows two categorical attribute examples in generalization hierarchy structure. For Figure 2a,
where months are ordinal values, the semantic distance between any two months is the ordinal difference
between them divided by 11. Figure 2b shows a ordinal attribute hierarchy with more than two levels.
In this case, the semantic distance are defined for nodes in the same level. sd(“1st grade”, “8th grade”) =

5

(a) Generalization hierarchy of attribute “month” in 2019 Baltimore 911-Call and Police Incident data

.

(b) Generalization hierarchy of education levels in United States

.

Figure 2: Generalization hierarchy of categorical attributes
.

8−1
13−1 = 7

12 because there are 13 values in leave level and the distance between those two values are 7;

sd(“Elementary school”, “Middle school”) = 2−1
4−1 = 1

3 because there are only 4 values in the second level.

2.3.2 Target Marginals

MGD requires the specification of a set Φ of target marginals, each φ ∈ Φ consisting of the following:

• Attributes in the Marginal. A set of attributes that are included in the marginal, and for each selected
attribute, which level of the generalization hierarchy is used in computing the marginal. The default
level for each selected attribute is the leaf level. This defines all the bins in the target marginal.
(Alternatively, this can be defined as selecting a generalization level for every attribute. If the root
level is selected for an attribute, then all records have the same value, and that attribute is effectively
not included in the marginal.)

• Attribute Weights. A weight wa for each selected attribute a. The weight wa ∈ {∞}∪ [0, 1], and if any
attribute has a weight in [0, 1], such weights for all attributes sum up to 1. If an attribute is assigned
a weight of ∞, it means that when computing the difference score on this marginal, one does not want
to consider moving between bins where this attribute has different values.

The assigned weights and the semantic distance function sd together define the bin distance matrix
Mφ needed for computing the AEMC. Given two bins/cells b and b′ in the marginal, if there exists an
attribute such that b and b′ differ in an attribute that has a weight of ∞, the distance between b and
b′ is ∞. Otherwise, the bin distance:

Mφ
b,b′ =

∑
a

wa · sd(ba, b
′
a) (2)

where ba denotes value for attribute a of the bin b. The matrix Mφ is used in Equation (1) to calculate
AEMC. Note that the distance between two cells are either ∞ or a value between [0, 1]. When the
distance is ∞, this means that for this marginal one does not want to moving between the two bins in
computing the earth mover distance.

The default for weight assignment is to assign the weight of∞ to each categorical attribute, and equal
weight to each numerical attribute.

6

• Tolerance threshold ∆φ. The threshold under which differences in bins are not penalized in AEMC. (See
Equation (1)).

• Marginal Score Weight ωφ, which is a positive number. This specifies how much the AEMC computed
on the marginal φ contributes to the final MGD score.

Summary of Difference Measures in defining MGD . There are several notions that measure differences

between two things here. For clarity, we recap them here.

• Semantic Distance sd is for the distance between two values for the same attribute. It is defined for
any pair of values that are on the same level of the generalization hierarchy, and is fully determined by
the generalization hierarchy and whether the attribute is ordinal or not. Its value is always in [0, 1].

• Bin Distance Mφ, defined in Equation (2), uses the semantic distance to define the distance between
two bins in one marginal. Each bin is specified by the value that each attribute can take. Mφ is defined
as the weighted sum of semantic distances on all attributes. It is a generalization of the Manhattan
distance by adding a weight to each dimension. We choose to use generalization of Manhattan distance
(instead of, e.g., Euclidean distance) in part because this enables faster computation of AEMC.

• AEMC, defined in Equation (1), is for measuring the difference between a pair of marginal tables, one
computed from the synthesized dataset, and the other from the ground truth dataset.

• MGD score is the weighted average of the AEMC score for all marginals in Φ. More specifically:

MGDΦ(DS , DT) =

∑
φ∈Φ

ωφ · AEMCMφ,∆φ (φ(DS), φ(DT))

 /

∑
φ∈Φ

ωφ

 (3)

where φ(D) is the marginal table obtained from dataset D using the marginal schema φ and flattened
to a vector.

2.4 Snapshot Mode and Deep Dive Mode

MGD provides a single final score, which provides a Snapshot Mode measurement. In addition, MGD is based
on the AEMC scores for different marginals. Examining these AEMC scores provides a deeper dive, as one
can see which marginals are preserved well, and which are not. It is also possible to expose more detailed
information in computing AEMC to provide even deeper dive. For example, within one marginal, we can
compute the contribution of each attribute to the AEMC score, illustrating the information on which attribute
is less accurately preserved. It is even possible to compute the contribution of individual bins to the AEMC

score and outputting the ones that have the most contribution, illustrating where the errors concentrate.
We have implemented MGD and can provide APIs to enable extraction of these internal values.

3 Applications of the MGD Metric

Here we discuss applications of the MGD metric. We first discuss how to apply it to temporal map data, and
then show how to configure the MGD metric to measure the desired values in the two examples in Section 1.2.

3.1 Application to Temporal Map Data

Temporal map data are relational data where some important attributes represent time and space. When
applying MGD to temporal map data, there are several considerations.

• The temporal spatial nature of the dataset can guide the choice of which marginals are included in Φ
to compute the MGD score. For example, when there are 40 attributes, considering all 3-way marginals
may be too many, and one may want to consider all 3-way marginals that include at least one of the
temporal or spatial attributes.

7

• The temporal attribute is naturally ordinal. When temporal attributes are used in NIST competitions,
they are often processed to have a limited set of values. For example, the Police Incident Data used
in Spring 1 generalizes the time attribute to month. Similarly the time attribute in the San Francisco
Fire dataset, which spans several years, was bucketized to 100 values. In some sense, the ground truth
dataset has already lost much information. This was because using finer grained values results in
sparse distribution, which previous metrics cannot handle well. MGD has several features that make it
more capable of handling finer-grained ordinal attributes. First the usage of semantic distance enables
one to distinguish synthetic datasets that have the time attribute approximately, but not completely
correct. Second, by defining a generalization hierarchy over the time attribute, one has the flexibility
of measuring both more precise distribution over the time attribute (e.g., by using a one-way marginal
over the time), and correlation of time with other attributes (e.g., by using multi-way marginals in
which a more coarse-grained values for time are used).

• The spatial attributes are similar to the time attributes in that they can be ordinal. It is also possible to
extend MGD to better handle spatial attributes. For example, for computational efficiency considerations,
we use the generalization hierarchy to derive the semantic distance function. However, when there are
natural distance measures for a spatial attribute, it is possible to directly specify a distance matrix
that assigns a distance to any two values. The tradeoff is that we can no longer exploit the hierarchical
structure underlying the semantic distance function, and have to explicit consider movement between
any pair of values, resulting in a quadratic number of movement variables.

3.2 Application to Example 1: Police Incident Data

In Section 1.2, we listed example datasets and kinds of information one may be interested in. Here we discuss
how they can be captured using MGD.

• Per neighborhood-month distribution of incident types. This is what the pie-chart metric used in
Sprint 1 tries to measure. To simulate this using MGD, one uses a 3-way marginal over time, neighbor-
hood, and incident type, with all weights being ∞, and a suitable ∆, which can be a small constant.
(We use ∆ = 2 in our experiments. Such a metric is similar to L1 distance, but ignores the impact
of small differences, which is in the same spirit as the pie-chart metric’s ignoring densities for incident
types that are below 5%.

• Per neighborhood total incidents over time. Here we assume that one wants to examine how the total
number of incidents changes over time for different neighborhood. One thus care about the accuracy
of the two-way marginal over neighborhood and time.

• Distribution of certain types of incidents over neighborhoods. To determine whether adequate re-
sources are available to handle incidents of certain types, we can consider a two-way marginal over
neighborhood and incident type. When we want to analyze different incident types separately, we de-
fine the weight for incident type to be ∞ so that counts from bins with different incident types cannot
flow into each other. The overall score thus reflects accuracy within each incident type. One can also
dive down into the details and look at movement cost for each incident type separately. Assuming that
a meaningful distance measure exists for neighborhood, one can run hierarchical clustering to come up
with a generalization hierarchy.

When one does not have a specific goal in mind, one could choose to measure the three one-way marginals,
the three two-way marginals, and the three-way marginal. One possible marginal weight assignment is 1/9
for each one-way marginals, 1/9 for two-way marginals, and 1/3 for the three-way marginal.

Figure 3 shows four scores for different synthetic datasets: (1) average error for randomly generated range
queries; (2) Inv-Pie (short for Inverse Pie Chart), defined to be (1− S/3336), where S is the pie-chart score
of the dataset; (3) the MGD score using the above weighting scheme (i.e., 1/9 for each of 1-way and 2-way
marginals, and 1/3 for the 3-way marginal); and (4) the AEMC score for the 3-way marginal, which can also
be viewed as MGD score that uses only the 3-way marginal. Because the range for (1), (3), and (4) is large,
they are plotted on log-scale.

8

(a) Inv pie v.s. range query (b) MGD v.s. range query

(c) Inv pie v.s. AEMC (3-way) (d) AEMC (3-way) v.s. range query

Figure 3: Comparison between range query, Inv Pie, MGD and AEMC (3-way). For MGD, we user weight 1
3 for

the 3-way marginal, ant 1
9 for the other 6 marginals

.

9

Each point in Figure 3 represents one dataset, and a few different methods are used to generate synthetic
data. See Appendix B for details.

From Figure 3, we can see that MGD correlates well with the range query error. AEMC correlates less well,
because it considers only accuracy of individual cells of 3-way marginals, and not accumulated errors over a
range of values. The pie-chart score does not correlates well with range query error, in part because it was
not designed to do so.

3.3 Application to Example 2: PUMS Data

For our second example, we use the dataset used in Phase 3 of the Differential Privacy Synthetic Data
challenge, the Public Use Microdata Sample (PUMS) of the 1940 USA Census Data. The dataset has 98
attributes. In the challenge, three metrics were used.

• Density Estimation. For this metric, the scoring algorithm randomly samples 300 marginal schemas,
each with three randomly chosen attributes. Then for each marginal schema, compute the normalized
marginal tables from the synthetic dataset and from the ground truth dataset, and then use the L1

distance between the two marginal table as the penalty. This can be defined in a straightforward way
using MGD.

• Range Query. For this metric, the scoring algorithm randomly samples 300 range queries and assesses
the accuracy of using the synthetic dataset to answer these queries. This cannot be directly imple-
mented using MGD, although this score is highly correlated with the above density estimation score
computed from 3-way marginals, as we observed during the competition.

• Gini Index and Rank Accuracy. For each city present in the dataset (as specified by the CITY column)
we calculate, based on the SEX and INCWAGE columns, Gini index and gender pay gap. This can be
captured by using the 3-way marginal over CITY, SEX, and INCWAGE. If a dataset more accurately
preserves this 3-way marginal, it would also result in more accurate estimations of Gini index and rank
of cities based on gender pay gap.

If one wants a MGD scheme that correlates highly with the scoring scheme used in this challenge (which
involves the three above-mentioned metrics), one can use a sufficiently large number of 3-way marginals,
and ensuring that the marginal involving CITY, SEX, and INCWAGE has a high weight, while treating
INCWAGE as an ordinal attribute.

4 Computation Issues

Computing the MGD requires computing the AEMC between two marginals. We now present two approaches
for computing AEMC. The first approach, which is more general, is to transform the optimization problem in
computing AEMC into a linear program, and use existing LP solver to solve it. The second approach, which
is more efficient, is to model AEMC as as a variant of the min-cost network flow problem.

4.1 Transform AEMC as a Linear Program

Recall that AEMC is defined as:

AEMCM,∆(P,Q) = min
X

∑
i,j

XijMij +
∑
j

max

{∣∣∣∣∣∑
i

Xij −Qj

∣∣∣∣∣−∆, 0

}
s.t. ∀i,

∑
j

Xij = Pi

10

The use of absolute values in the objective function of AEMC can be removed by introducing additional dummy
variables. The above is equivalent to the following linear program:

min
X,e

∑
j

ej

s.t. ∀j, ej ≥
∑
i

XijMij +

(∑
i

Xij −Qj −∆

)

ej ≥
∑
i

XijMij +

(
−
∑
i

Xij +Qj −∆

)
ej ≥

∑
i

XijMij

∀i,
∑
j

Xij = Pi

With M,∆, P,Q as the input to an optimization solver, we can obtain the AEMC between two marginals
represented by P and Q.

4.2 Model AEMC as Min-cost Flow Problem

The AEMC is equivalent to a min-cost flow problem with some edges requiring both maximum and minimum
flow through them. To describe from a high level, the customized min-cost flow problem asks for the minimum
cost of flows from source node s to sink node t. Between s and t, there are two sets, each having T nodes.
The nodes in the first set corresponds to the bins of P , while the nodes in the second set corresponds to the
bins of Q. There are flows in the following scenarios:

1. From s to all the nodes in first set. The flow from s to the ith node in the first set is constrained to
Pi, with cost 0.

2. From s to all the nodes in the second set. The flow from s to the jth node in the second set is
constrained to be non-negative, with cost 1.

3. From the nodes in the first set and the nodes in the second set. The flow from ith node in the first set
to the jth node in the second set is constrained to be non-negative and have cost Mij .

4. From the nodes in the second set to t. There are two flows from the jth node for j ∈ [T] in the second
set to t. One is constrained to be [Qj −∆, Qj + ∆] and with cost 0. The other flow between jth node
in the second set has non-negative constraints but cost 1.

We detailed the algorithm in Appendix A.

4.3 Optimization of AEMC

Generally speaking, there are O(T 2) variables in the AEMC optimization problem, each of which corresponds
to a movement of counts (flow) from bin b to bin b′. These O(T 2) variables manifest as O(T 2) edges in the
second approach. However, as introduced in [9], the number of variables for solving earth-mover distance
(also applied to AEMC in our case) can be reduced to O(T) if each bin b has a set of “neighbours” N(b) such
that the number of neighbors for each bin is a constant independent from the domain size of any attribute,
and all flows between any two bins b and b′ can be replaced by a sequence of flows between only neighbors,
with the same cost. That is,

∀b, b′,∃b1 ∈ N(b), b2 ∈ N(b1), . . . , b′ ∈ N(bk), Mb,b′ = Mb,b1 + Mb1,b2 + . . .+ Mbk,b′

Several design features of AEMC aim at enabling the above optimization, which we now discuss.

11

• The L1 nature of bin distance. The way the bin distance matrix is defined, namely Mbb′ =
∑
a wa ·

sd(ba, b
′
a), means that we can limit neighboring bins for any bin only to those that differ in exactly one

attribute.

• Ordinal Attributes. The way semantic distance is defined for ordinal attributes means that for each
value v, one only needs to consider the value just above v and the value just below v as v’s neighbors.

• Non-ordinal Attributes. Recall that we define the semantic distance between two values of a non-ordinal
attribute at level t of the generalization hierarchy as t−s

t , where s is the level of the lowest common
ancestor of the two values. Using this, we can introduce new dummy values for this attribute, with one
value for each node at a level < t. Then, each value is only neighbors with its parent and descendent.
The cost of moving between a parent and child node has cost 1

2×t . Adding these new dummy values
will create new dummy bins, and constraints need to be added to ensure that they start and end with
0 counts in the flow.

4.4 Scalability/Feasibility

We have found that the linear programming approach of computing AEMC scales to thousands of
bins in marginals, but have difficulty dealing with tens of thousands or more bins. On the
other hand, modeling AEMC as a min-cost flow problem and solving the instance using OR-Tools
(https://developers.google.com/optimization), we can compute the AEMC between the ground truth 3-way
marginal of Police Incident Data (totally 580464 cells) and the privatized one in 2 minutes.

We suggest avoid using marginals that have too many cells, both for scalability concerns and for effec-
tiveness in measuring meaningful differences between marginals. In general, if most cells in the the marginal
table from the ground truth dataset has very low count, not much meaningful information can be obtained
under the constraint of DP.

5 Metric Defense

In Section 3, we have illustrated the application of MGD in two applications. Discussions there already
addresses issues such as parameter tuning, discrimintaive power, and coverages. Here we add some additional
discussions.

5.1 Exploration of Parameter Tuning

Section 3.2 showed that depending on how one wants to use the final data, one can choose different weights
for marginals. The generalization hierarchies will also depend on the application domain, and the nature of
the attributes. Another parameter that one can choose is ∆. We currently recommend choosing ∆ to be
a small constant, e.g., some value between 2 and 10. Note that when accumulated small differences have a
larger impact, that can be captured by using more coarse-grained marginals that have fewer cells. Due to the
time limit, we have only limited experiences using MGD. Therefore we do not yet have a deep understanding
on the impact of exact choice of ∆, even though we believe that the added flexibility of ∆ is useful.

5.2 Discriminative Power and Coverages

One main challenge for designing a metric is that there is no obvious metric for assessing proposed metrics.
There are many data analysis tasks one may be interested in, and one synthetic dataset may perform very
well on one task, but poorly on another. Thus no single metric can be simultaneously “accurate” for all tasks.
Without fixing the set of data analysis tasks, we cannot think of a better metric than measuring accuracy
of many marginals. In our opinion, measuring L1 differences on either all 2-way and 3-way marginals (or a
randomly selected subset of them if there are too many) is an excellent starting point.

Our proposed MGD metric can be viewed as attempts to improve the basic L1 difference on marginals,
by addressing some limitations and issues we have experienced with the metric, both through our prior
research and through our experiences in the NIST Differential Privacy Synthetic Data challenge. One goal
is to exploit semantic meanings among the values, both ordinal ones and non-ordinal ones. In the last NIST

12

competition, we observed that when an attribute has a large domain, almost all marginals involving that
attribute tend to be have close to maximal L1 error. This is because the vast majority of the bins have 0 or
close to 0 count. After adding noises, which cells have non-zero count is random. Thus even if a synthesized
dataset can capture the few high counts of interest, the L1 error would still be dominated by those caused
by what are essentially white noises. We introduce the approximate nature to enable one to avoid this issue.

We believe that for almost any data analysis tasks, one can find suitable subset of marginals and corre-
sponding weight so that the MGD scores are highly correlated with accuracy in the data analysis task. However,
the challenge in using MGD may be that one has to identify the right configurations for the application, which
may not be an easy task.

References

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algorithms, and Applications.
Prentice hall, 1993.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In Proceedings
of the 34th International Conference on Machine Learning-Volume 70, pages 214–223, 2017.

[3] S. Cohen and L. Guibasm. The earth mover’s distance under transformation sets. In Proceedings of the
Seventh IEEE International Conference on Computer Vision, volume 2, pages 1076–1083. IEEE, 1999.

[4] K. Grauman and T. Darrell. Fast contour matching using approximate earth mover’s distance. In Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
2004. CVPR 2004., volume 1, pages I–I. IEEE, 2004.

[5] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville. Improved training of wasser-
stein gans. In Advances in neural information processing systems, pages 5767–5777, 2017.

[6] T. Karras, T. Aila, S. Laine, and J. Lehtinen. Progressive growing of gans for improved quality, stability,
and variation. In International Conference on Learning Representations, 2018.

[7] M. Kusner, Y. Sun, N. Kolkin, and K. Weinberger. From word embeddings to document distances. In
International conference on machine learning, pages 957–966, 2015.

[8] N. Li, Z. Zhang, and T. Wang. DPSyn: Differentially private synthetic data publication, 2018.

[9] H. Ling and K. Okada. An efficient earth mover’s distance algorithm for robust histogram comparison.
IEEE transactions on pattern analysis and machine intelligence, 29(5):840–853, 2007.

[10] F. Wang and L. J. Guibas. Supervised earth mover’s distance learning and its computer vision applica-
tions. In European Conference on Computer Vision, pages 442–455. Springer, 2012.

A Using Min-cost Flow with Lower Bounds to Compute AEMC

We first show how to reduce the problem of computing AEMC to Min-cost Flow with Lower Bounds, and then
show how this can be reduced to Min-cost circulation problem, for which we use the standard algorithm
implemented in software packages such as OR-Tools to solve.

A.1 Reducing Computing AEMC to Min-cost Flow with Lower Bounds

For an AEMC instance, we create a graph with 4 layers, where the first layer contains only the source node s,
the second layer contains n nodes representing cells of the marginal P computed from the privatized data,
the third layer contains n nodes representing cells of the marginal Q computed from the ground truth, and
the fourth layer contains only the sink node. The figure below shows an example of n = 3 bins.

13

s

p1

p2

p3

q1

q2

q3

t

Let us first restrict our problem: suppose we can only move so that each bin qi lies within the approxi-
mated range of Qi, i.e. Qi −∆ ≤ qi ≤ Qi + ∆.

We will add edges (s, pi) with lower bound b(s, pi) = Pi, capacity c(s, pi) = Pi, and unit cost w(s, pi) = 0
for all 1 ≤ i ≤ n. Intuitively, think of these edges as “whether we want it or not, each pi must have Pi value
at first”. Similarly, we will add edges (qi, t) with lower bound b(qi, t) = Qi −∆, capacity c(qi, t) = Qi + ∆,
and unit cost w(qi, t) = 0, with the intuition that each resulting bin must contribute at least Qi −∆ and at
most Qi + ∆.

s

p1

p2

p3

q1

q2

q3

t

P1
, P1

, 0

P2, P2, 0

P
3 , P

3 , 0

Q
1 −

∆, Q
1 +

∆, 0

Q2 −∆, Q2 + ∆, 0

Q3
−∆,

Q3
+

∆,
0

Let us relax the restriction and see how we can allow each resulting bin to exceed the predefined range
with a unit cost of α. (In definition of AEMC, the value of α is implicitly set to 1. Here we describe the general
case, when α can be set to other values). We can do it as follows: for each node qi, add an edge (s, qi) with
lower bound b = 0, capacity c =∞, and unit cost w = α; additionally, add an edge (qi, t) with lower bound
b = 0, capacity c = ∞, and unit cost w = α. Intuitively, the edge (s, qi) helps qi to achieve the predefined
range [Qi−∆, Qi+∆] with a unit cost of α; similarly, the edge (qi, t) helps qi to “relieve” some flow to allow
it to reach the predefined range [Qi −∆, Qi + ∆] with a unit cost of α.

14

s

p1

p2

p3

q1

q2

q3

t

P1
, P1

, 0

P2, P2, 0

P
3 , P

3 , 0

Q
1 −

∆, Q
1 +

∆, 0

Q2 −∆, Q2 + ∆, 0

Q3
−∆,

Q3
+

∆,
0

0,∞
, α

0,∞, α

0,∞
, α

0,∞,
α

0,∞, α
0,∞, α

Finally, for every pair of bins (i, j), add an edge (pi, qj) with lower bound b = 0, capacity c = ∞, and
cost w = Mi,j . For example, suppose Mi,i = 0 ∀i and only M1,2 is defined, then the resulting graph is:

s

p1

p2

p3

q1

q2

q3

t

P1
, P1

, 0

P2, P2, 0

P
3 , P

3 , 0

Q
1 −

∆, Q
1 +

∆, 0

Q2 −∆, Q2 + ∆, 0

Q3
−∆,

Q3
+

∆,
0

0,∞
, α

0,∞, α

0,∞
, α

0,∞,
α

0,∞, α
0,∞, α

0,∞, 0

0,∞, 0

0,∞, 0

0,∞
,M

1,2

Now we run the min cost flow with lower bounds solver on this graph to get the AEMC.
Moreover, since the number of cells in P and Q are the same, and the cost of not moving bins is 0 (i.e.

Mi,i = 0 ∀i), we can compress the pi and qi nodes together to reduce the number of nodes by half.

s

p1

p2

p3

t

P1, P
1, 0

P2, P2, 0

P
3 , P

3 , 0

Q
1 −∆, Q

1 + ∆, 0

Q2 −∆, Q2 + ∆, 0

Q3
−∆, Q

3
+ ∆, 0

0,∞, α

0,∞, α

0,∞
, α

0,∞
, α

0,∞, α

0,∞, α

0
,∞

,M
1
,2

15

A.2 Solving Min-cost Flow with Lower Bounds

The flow with lower bounds problem is similar to the classic flow problem but with an additional constraint
that there is a lower bound on each edge. More formally, given a graph G = (V,E) with a source s and a
sink t, where each edge (u, v) has a capacity c(u, v) and a lower bound b(u, v), the goal is to find a flow f
from s to t such that

b(u, v) ≤ f(u, v) ≤ c(u, v) ∀(u, v) ∈ E∑
(x,u)∈E

f(x, u)−
∑

(u,y)∈E

f(u, y) = 0 ∀u ∈ V \ {s, t}

Such a flow is called a valid flow on G. The min cost flow with lower bounds problem gives each edge
(u, v) a cost w(u, v), and we need to find a valid flow that minimizes

∑
(u,v)∈E

f(u, v) · w(u, v)

We solve the min cost flow with lower bounds by reducing it to the min circulation problem. The
difference is that there are no source and sink in the graph. Any min flow with lower bounds problem can
be reduced to an instance of the circulation problem by adding an edge (t, s) with lower bound b(t, s) = 0,
capacity c(t, s) =∞, and unit cost w(t, s) = 0.

Let us define another problem called min circulation with node demands: You are given a graph G =
(V,E), where each edge (u, v) has a capacity c(u, v) and a unit cost w(u, v), and each node has a demand
d(u). We need to assign a flow to each edge (u, v) such that each node’s demand is satisfied, and the overall
circulation is minimal. Formally, the problem can be described as the following linear program:

min
∑

(u,v)∈E

f(u, v) · w(u, v)

s.t. 0 ≤ f(u, v) ≤ c(u, v) ∀(u, v) ∈ E∑
(x,u)∈E

f(x, u)−
∑

(u,y)∈E

f(u, y) = d(u) ∀u ∈ V

We can transform an instance of min circulation with lower bounds to an instance of min circulation
with node demands using the following reduction:

• First, initialize the demands for all nodes to be zero, i.e. d(u) = 0.

• For each edge (u, v), add b(u, v) ·w(u, v) to the answer, add b(u, v) to d(u), subtract b(u, v) from d(v),
and reform this edge to have no lower bound and with a capacity of c(u, v)− b(u, v).

Intuitively, since each edge (u, v) must have a lower bound of b(u, v), we simply force this lower bound
(thus we need to add b(u, v) ·w(u, v) to the answer), and the remaining flexible capacity for this edge is only
c(u, v) − b(u, v). To enforce that there must be such flow going through that edge, we reserve a supply of
b(u, v) on the node u, therefore u must “eat” b(u, v) flow from other edges, hence adding b(u, v) to d(u);
similarly, v must “burp” b(u, v) to other edges, hence subtracting b(u, v) from d(v).

The min circulation with node demands problem is a well known problem[1], with the state of the art
algorithm having a time complexity of O(mn logW log logC), where n = |V |, m = |E|, W = maxw(u, v), and
C = max c(u, v). We are currently using OR-Tools solver, which has a time complexity of O(n2m log(nC)).

16

Dataset Inv Pie RQ
AEMC

M N I M+I M+N N+I 3-way

mediocre 0.5689 1.0666 0.8669 0.8666 0.8667 0.8641 0.8624 0.8117 0.2667
very-poor 0.96 9.0631 7.6956 7.6952 7.6954 7.6927 7.691 7.6401 7.1258
dpsyn-0.1 0.8236 0.0451 0.026 0.0598 0.1026 0.0748 0.0755 0.1169 0.1013
dpsyn-0.25 0.6751 0.0175 0.0086 0.0214 0.0413 0.0286 0.0266 0.0616 0.0556
dpsyn-0.5 0.5801 0.0103 0.0048 0.009 0.018 0.0131 0.0125 0.0332 0.0361
dpsyn-1.0 0.5222 0.007 0.0022 0.0044 0.0071 0.0053 0.0056 0.0157 0.0305
dpsyn-2.0 0.5039 0.0074 0.0011 0.002 0.0029 0.0025 0.0026 0.0061 0.0298
dpsyn-4.0 0.5113 0.0169 0.0142 0.0138 0.014 0.0117 0.0097 0.0016 0.0296
dpsyn-10.0 0.5017 0.007 0.0019 0.0028 0.0034 0.0025 0.0025 0.0053 0.03

lap-0.25 0.9853 19.3996 15.6775 15.6772 15.6773 15.6747 15.673 15.6216 15.1237
lap-0.5 0.9619 8.8361 7.6918 7.6915 7.6916 7.689 7.6873 7.6366 7.1222
lap-1.0 0.9072 4.3788 3.7608 3.7604 3.7606 3.7579 3.7562 3.706 3.1763
lap-2.0 0.8278 2.115 1.8199 1.8195 1.8196 1.817 1.8153 1.7651 1.224
lap-4.0 0.5701 1.0375 0.8661 0.8658 0.8659 0.8634 0.8616 0.8115 0.2661
lap-10.0 0.3935 0.369 0.3178 0.3174 0.3176 0.3151 0.3132 0.2622 0.0481

sample-0.01 0.8883 0.0407 0.019 0.046 0.0252 0.0461 0.0827 0.1428 0.1956
sample-0.05 0.821 0.0152 0.0083 0.0199 0.0096 0.0197 0.0344 0.0669 0.111
sample-0.1 0.7337 0.0122 0.0059 0.0145 0.0075 0.0142 0.0244 0.0443 0.074
sample-0.25 0.5494 0.0072 0.0028 0.008 0.0044 0.0077 0.0135 0.0222 0.0315
sample-0.5 0.3834 0.0042 0.0019 0.0045 0.0022 0.0043 0.0073 0.0103 0.0106

Table 1: Compare inversed Pie-chart metric (Inv Pie), range query (RQ) and AEMC on different marginals,
M: “months”, N: “neighborhood”, I: “incident type”. ∆ = 2 for AEMC.

B Detailed Results of Experiments

Table 1 shows different scores of synthetic datasets. The “mediocre” and “very-poor” datasets are from Ex-
ample Temporal Map Data provided by the competition. The synthetic datasets, “dpsyn-X”, are generated
by algorithm in [8] with privacy budget ε = X and truncation which limits the per-user contribution to 2.
The “lap-X” datasets are produced by basic Laplace mechanism in differential privacy with privacy budget
ε = X and sensitivity is set to 20. The “sample-X” is for randomly sampling X portion of incidents from
the incident datasets.

The Inv Pie score is computed by (1− S/3336), where S is the pie-chart score of the dataset. The range
query (RQ) is the relative error of 300 randomly generated range queries, each of which queries on the count
in 30% of month, neighborhood and incident types.

17

