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Separability
Using classification models to evaluate the usefulness of privatized data 
without losing simplicity, explainability or generality.

Executive Summary

Metric Overview
Separability combines two key ideas:

Idea 1 If a classifier can effectively distinguish between ground truth data and 
privatized data, we show it is possible to use privatized data to draw 
inaccurate conclusions.

Idea 2 The strength of classifiers should be measured with respect to the 
complexity of the function class used to build them.
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By normalizing the accuracy of a classifier differentiating between private and 
ground truth datasets by the accuracy of a classifier attempting to fit noise, 
we can uncover structural differences in privatization algorithms without 
worrying about the relative ability of a given classifier to overfit. While this 
approach generalizes to any family of classifiers, in this submission, we are 
promoting the use of Logistic Regression and Fixed-Depth Decision Trees.

We see four key benefits to separability under logistic regression.

First, the metric is easy to interpret. If a privatized data release has high 
separability, then the difference in error of classification models from that 
function class with respect to our privatized and ground truth datasets can 
also be high.

Next, the metric is simple to implement. Separability relies on concepts that 
data scientists are familiar with — namely binary classification. By building our 
classifiers with simple explainable models, the metric can be implemented 
using standard data science packages. There are no new concepts to learn, no 
new packages to install and no specialized hardware needed.

from sklearn.linear_model import LogisticRegression 
import pandas as pd 
import random 
 
def compute_separability(df1, df2): 
    ground_truth['CLASS'] = 'Ground Truth' 
    privatized['CLASS'] = 'Privatized' 
 
    combined = pd.concat([ground_truth, privatized]) 
 
    X = combined.drop(columns=['CLASS']) 
    y = combined['CLASS'] 
    clf = LogisticRegression().fit(X, y) 
 
    y_random = y.copy().values 
    random.shuffle(y_random) 
    clf_random = LogisticRegression().fit(X, y_random) 
    return clf.score(X, y) / clf_random.score(X, y_random) - 1

Third, separability is explainable. Separability benefits from the explainability 
of the chosen function class. If a privatized dataset has high separability under 
logistic regression or decision trees, data scientists can rely on well-known 
and standard techniques to uncover underlying issues. For example, later in 
this document, we show how analyzing coefficients enabled us to diagnose a 
structural problem in the privatized data for Maryland police calls.
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Finally, separability offers a theoretically robust and modular framework. 
While this submission suggests the use of logistic regression and decision 
trees, these results also apply to random forests or any other classification 
architecture. In fact, for function families that can solve the XOR problem (like 
decision trees), separability provides a strict upper bound on the difference in 
error on ground truth and privatized datasets, thereby providing a guarantee 
of data utility.

Real World Use Case
In applying our separability metric under logistic classification to the 
privatized Baltimore 911 Call and Police Incident Data provided in the sample 
competition pack, we find that the privatization methods meaningfully change 
the structure of the algorithm's output.

The data consists of 1.5 million 911 calls, along with the respective incident 
type, neighborhood, time, and caller ID for each call. The algorithm outputs of 
interest are histograms of incident types at the neighborhood-month level. 

Below is a plot of the normalized histograms for one neighborhood-month, 
with the ground truth on the left, and privatized versions in the middle and on 
the right. A quick visual inspection shows that the ground truth and privatized 
histograms are distinguishable. Smaller values of , a parameter in the Laplace 
mechanism, correspond to higher magnitudes of noise and stronger privacy 
guarantees. Unsurprisingly, adding more noise makes the histogram look more 
obviously different from the ground truth.

ε

https://www.policefoundation.org/publication/baltimore-community-input-to-the-baltimore-police-department-community-policing-plan/
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Based on the significant visual differences in the histograms, we should expect 
our metric to assign this privatized output a bad score. In our case, this means 
that the separability of our ground truth and privatized datasets should be 
very high.

As hoped, the separability of this dataset is incredibly high at . In our 
Snapshot and Deep Dive section we analyze the coefficients of our classifier 
and its results on specific chunks of the dataset to determine why separability 
is high, and provide recommendations for what steps would need to be taken 
for this score to improve.

Metric Definition

Formal Metric Definition
We consider a setting in which an algorithm is run on a given dataset. For 
example, the output of the algorithm may be a table of summary statistics or a 
histogram of the outcomes. Denoting the ground truth algorithm result by  
and its privatized version by , we propose the following 
procedure:

 Combine  and  into one larger dataset 

 Label rows of  as  if the row is from  and  if the row is from , 
creating target vector 

 Train a classifier  on  to predict  and compute the accuracy of  on 

 Randomly shuffle  to obtain 

 Follow the same procedure as in step 3 to train a classifier  on  
to predict  and compute the accuracy of 

 Return 

 is always a number between  and , and lower numbers mean 
that the privatized data release is a better representation of your data.
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⚠ We provide a more detailed proof of why separability is between  
and  as well as the formal guarantees that separability provides later 
in the document

Explanation of Metric Parameters
The one meaningful choice when implementing separability is the choice of 
classification functions. While we suggest the use of logistic regression or 
decision trees, this choice is entirely at the discretion of the model 
implementer.

Snapshot and Deep Dive Modes
Separability can be used to create a snapshot of the overall utility of a 
privatized data release as well as do a deep dive into particular subsets of the 
data. We explore these properties through a more detailed analysis of the 
Baltimore 911 Call and Police Incident Data.

Snapshot
There are 174 types of incidents, so histograms are 174-dimensional vectors. 
Labeling the ground truth histograms with 1 and the privatized histograms with 
0, we fit a logistic regression model.

0
1
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While our classifier perfectly distinguishes between the ground truth and 
privatized histograms, as can be seen in the receiver operating characteristic 
ROC curves above, it is not able to effectively split our randomized dataset 
with accuracy at just 55%. This gives us a separability of . This high 
separability score suggests that the provided privatized histograms should not
be used for downstream analysis, aligning with our intuition.

We believe that sparsity is a major driver of these discrepancies. Adding noise 
to sparse outputs makes the output no longer sparse and makes the privatized
output noticeably different from the ground truth. In the use case, for example, 
the true histograms contained mostly zeros, but adding noise made the 
histograms not sparse. This issue can be avoided at the upstream algorithm 
design stage. Rather than using a vanilla Laplace mechanism, which does not 
preserve sparsity, one can use alternative differential privacy mechanisms that 
preserve sparsity. One such procedure for histograms is described here. 
Sparsity-preserving procedures should perform better under our metric and 
generate results more appropriate for downstream use.

Deep Dive
Because we are using logistic classifiers, we can interpret our model to learn 
why it is so easy to distinguish between the ground truth and the privatized 
data at the dataset level. Looking at the model's parameters, we see that 
coefficients are negative for incident types that do not occur in the ground 
truth histogram and positive for incident types that occur more frequently. 
These negative coefficients mean that the presence of certain incident types is
highly indicative of the histogram being privatized.

.8

http://dimacs.rutgers.edu/~graham/pubs/papers/sparsedp.pdf
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This shows that the significant number of calls in categories that do not exist 
in our ground truth dataset has meaningfully changed the conclusions that can 
be drawn from the privatized dataset.

The classifier yields further insights about the quality of the data at the 
neighborhood-month level. Given the high separability, evaluating the model 
for a privatized histogram gives the probability the classifier assigns to that 
histogram being from the ground truth (i.e. Prob(Y=1)). Higher probabilities are 
desirable and indicate that the privatized histogram looks like a ground truth. 
We compute these probabilities for each of the histograms in the  
dataset and plot the distribution. 

ε = 4
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The estimated probabilities have a mean of 1.4% and a variance of 0.00567, 
which corresponds to a standard deviation of about 7.5%. For the vast majority
of cases, the classifier is able to easily determine that the algorithm output is 
not from the ground truth.

We decompose the variance in the estimated probabilities to their intra-group 
and inter-group group components, where the groups are spatial 
(neighborhood) or temporal (month). 

Spatially, most of the variation is between neighborhoods. That is, some 
neighborhoods consistently have better estimated probabilities than others. 
Temporally, most of the variation is within-month, so seasonal trends in the 
estimated probabilities are not a primary concern. Rather, efforts should be 
directed toward understanding why some neighborhoods look more like the 
ground truth than others after privatization. This may be due to the 
randomness of the Laplace mechanism or due to systematic differences 
between the neighborhoods.
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Metric Defense

Discriminative Power
One of the benefits of this metric is that the relative capabilities and 
drawbacks of the discriminative power of separability is identical to the 
relative capabilities and drawbacks of chosen method of binary classification. 
For example, while logistic regression effectively captures how changes in the 
magnitude of features impact the likelihood of being a particular class, it 
actively does not capture higher order effects like decision trees.

Description of Coverage
This metric is specifically designed to measure the impact of privatization on 
the accuracy of yes and no questions. Importantly, it does not provide 
corresponding bounds for regression problems.

Scalability / Feasibility
The training time for a logistic regression is  and the training time for a 
fixed-depth decision tree is , where  is the number of 
dimensions of the dataset and  is the number of samples. Computing the 
Linear Inseparability on the provided Baltimore 911 Call and Police Incident 
Data for both logistic regression and decision trees completed within a few 
seconds on a Macbook Pro.

Generalizability
We believe that low scores on our metric are an important prerequisite to 
releasing privatized data. If a privatized data release has high separability, 
downstream data analysts can correctly use that information to draw 
inaccurate conclusions.

We recommend using separability both:

 As a practical tool to check histograms before releasing to the public or to 
other researchers

 As a research tool to analyze how differential privacy algorithms distort 
results

O(nd)
O(n× log(n) × d) d

n

https://www.policefoundation.org/publication/baltimore-community-input-to-the-baltimore-police-department-community-policing-plan/
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Importantly, this metric is effective for any dataset that lends itself to binary 
classification tasks. For example, researchers might want to determine...

Which party a particular area voted for by analyzing privatized 
demographic information

Whether or not a particular town has a high risk of health issues based on 
the existence of certain types of industry

Whether a particular patient has a disease

Theoretical Background

⚠ This section relies on some relatively complicated math as well as 
concepts from statistical learning theory. While these are in no way 
required to implement separability, they are required to understand its 
generalized error bounds.

VC Dimension
VC dimension is a concept from computational learning theory that bounds the
"richness" of a function class . For our uses, the only important result is if a 
function class has finite VC dimension, then as the number of samples with 
random labels in a dataset grows, the maximum accuracy of binary classifiers 
from  will approach .

The vast majority of functions we encounter (including logistic regression and 
fixed-depth decision trees) have finite VC dimension. We show below how 
separability behaves for function classes with finite VC dimension.

PAC Learning and Empirical Risk Minimization
PAC Probably Approximately Correct) learning and empirical risk minimization 
are also fundamental concepts in computational learning theory. In our 
application, we will use the following adaptation of the definition of Agnostic 
PAC learnability: for a binary classification problem that is PAC-learnable, 
given a sufficient period of time, we can use empirical risk minimization to 
determine a classifier that is arbitrarily close to the optimal classifier, for 
arbitrarily high confidence levels.

The Fundamental Theorem of Statistical Learning Theory tells us that if a 
function class  has finite VC dimension, it is PAC learnable.

F

F .5

F
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⚠ The combination of these two statements is the foundation of our 
subsequent work. 
 
For function classes with finite VC dimension, we have a deterministic 
protocol that allows us to compute the optimal classifier to our level 
of desired accuracy and confidence.

0-1 loss function
For a classifier , for a value , the  loss function is  if  classifies  
correctly and  otherwise. For a given dataset , we define the loss  
as the average loss of the  loss of  over .

Theoretical Properties

Separability is between 0 and 1
Under this setup, the classifier  will have accuracy . Therefore, 
without loss of generality, we can assume that the accuracy of  and  
are bounded below by .

By the definition of accuracy,  and  are also bounded above by . 
This guarantees that .

Separability bounds the change in behavior on private and 
ground truth

⚠ This proof makes the assumption that if a classifier , then the 
loss function associated with it is in  as well. This result holds for 
function families that are closed under XOR, like decision trees.

This proof is quite technical! The key takeaway from it is the following:
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For sufficiently large datasets and sufficiently complex 
function classes, the difference in loss of classifiers on our 
ground truth and privatized data is less than or equal to the 
separability.

For sufficiently large datasets, if we are using a function family  with finite 
VC dimension, the accuracy of our classifier  converges to . 
Therefore, .

And if we assume that our function class has finite VC dimension, then we can 
assume that by using empirical risk minimization, the Fundamental Theorem of 
Statistical Learning tells us that . 
Therefore we can say that to arbitrary levels of confidence

Now consider a binary classifier  trained on our privatized dataset, and 
define  and  as value of the  loss functions on our ground 
truth and privatized datasets respectively. Define 

, our theoretical separability.

By the definition of accuracy:

Simplifying

Replacing in for our definition of  from 

Now, assume towards contradiction that there exists a classifier  such that

F

Crandom .5
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Replacing in for the definition of , this in turn implies

However, this is a direct contradiction of our re-expression of  as shown in 
, as  is a binary function in . Therefore we are guaranteed that for all 

classifiers , the difference in accuracy on the private and ground truth 
datasets is bounded by .

L (D) −C L (P) >C γ

LC

>
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