


Augmented Repair via Additive Manufacturing

Team POC: Joey Griffiths

joeyg42@vt.edu

Additive Repair enabled by Advanced

Manufacturing

Underwater Metal 3D Printing on Stainless Steel

Rotating Tool Substrate Surface

Aquatic Repair by AFSD

Combining a novel additive manufacturing technology with modern advances in robotics to enable superior repair in less than half the time as current methods

1. The Problem

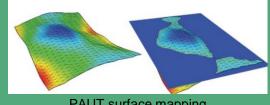
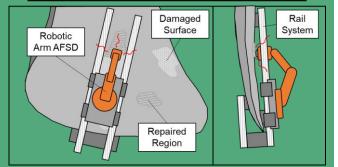

Erosion damage and fatigue cracking of metallic turbine components causes cumulative efficiency loss, and hydro-electric plant downtime for maintenance and repair, driving up the levelized **cost** of hydro-electric energy (LCOE)

Image courtesy of Victoria Propeller Ltd.


2. Our Solution

- Underwater inspection and repair using AFSD and phased array ultrasound (PAUT)
- Unique solid-state deposition with low residual stress and distortion
- Not limited to traditional 'weldable' materials, and can repair fatigue cracks
- > Estimated 10% reduction in LCOE

PAUT surface mapping

Semi-Autonomous Underwater Repair via AFSD

Team Fusion Free Fabrication

Innovative early- and midcareer professionals

Technical Expertise in Advanced Manufacturing

Diverse work experience including aerospace, semiconductor, and additive manufacturing, Army Research Labs, and Oak Ridge National Lab

