Objective

Develop a low-cost and easy-to-apply CBPC (Chemically **Bonded Phosphate Ceramic) coating to drastically reduce** corrosion of steel hydropower structures and thus decrease the levelized cost of energy.

Annual osts (\$) 08M Cost Annual Energy roduction **Resource** Availability Characteristics

Problem Impact

 Annual corrosion-related costs total about \$17 billion USD for the electric power industry.¹

• Corrosion has two negative impacts on the hydropower levelized cost of energy: it increases O&M costs while lowering resource availability. ¹NACE International Corrosion Costs and

Preventive Strategies in the United States, 2001

Substrate

Ceramic Layer

Iron Phosphate Layer

CRUST

(Ceramic Rust Universal Sealant Technology)

Approach

1) Assess CBPC coating usage in other industries (land-based heavy infrastructure).

2) Create candidate CBPC formulations and spray application method in-house.

3) Test and compare with commercially available coatings and provide a recommendation for a pilot program to WPTO.

• Several different CBPC coating formulations are currently used in non-hydropower land-based applications.

Technology

 CBPCs chemically bond to the substrate and form an iron phosphate layer with a ceramic outer coating, with a cure time of approximately 20 minutes, minimizing downtime.

• This coating provides protection with a ceramic shell that resists corrosion, fire, water, abrasion, chemicals, and temperatures as high as 205 degrees Celsius.