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a b s t r a c t 

Future autonomous vehicles will generate, collect, aggregate and consume significant volumes of data 

as key gateway devices in emerging Internet of Things scenarios. While vehicles are widely accepted as 

one of the most challenging mobility contexts in which to achieve effective data communications, less 

attention has been paid to the privacy of data emerging from these vehicles. The quality and usability of 

such privatized data will lie at the heart of future safe and efficient transportation solutions. 

In this paper, we present the K Privacy mechanism. K Privacy is to our knowledge the first such mech- 

anism that enables data creators to submit multiple contradictory responses to a query, whilst preserving 

utility measured as the absolute error from the actual original data. The functionalities are achieved in 

both a scalable and secure fashion. For instance, individual location data can be obfuscated while pre- 

serving utility, thereby enabling the scheme to transparently integrate with existing systems (e.g. Waze). 

A new cryptographic primitive Function Secret Sharing is used to achieve non-attributable writes and we 

show an order of magnitude improvement from the default implementation. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Introduction 

Researchers are becoming increasingly interested in studying

smart city activities and interactions, such as pedestrians, drivers

and traffic, city resources (e.g., energy) and city environment (e.g.,

pollution, noise). These studies are commonly based on Open

Shared Data made available by several Smart City testbeds around

the country. To this end, Open Data Science enables researchers to

collect the data, analyze and process it with Data Mining and Ma-

chine Learning techniques and create accurate models that allow

them to credibly validate smart city design methodologies. 

There is a growing demand for researchers and manufactur-

ers to deploy their technologies in real vehicles, roads and cities.

Rather than requiring each stakeholder working in the area to

create new solutions for securing their experimental or vehicu-

lar infrastructure, we propose a highly scalable, common “privacy”

infrastructure that enables the non-attributable dissemination of

data, whilst simultaneously conserving and preserving the criti-

cal information content properties required for value added service

provision by aggregators and upstream analysts. 

As smart city experiments are frequently performed on mas-

sive scale with public participants, it is prudent to surmise that

some may seek to exploit the data for illicit purposes. Publicly re-

leasing data with exact answers to queries (without sanitization)
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as resulted in numerous privacy violations and attacks, e.g., re-

ating to unintentional medical data disclosure of high profile gov-

rnors [1] , shutdowns of seemingly innocuous open data machine

earning competitions [2] , location tracking attacks and DoS at-

acks [3] , and unintentional sharing of mobility patterns of high

rofile US citizens with foreign governments [4] . k-anonymity in-

roduced by Sweeney in 1998 [1] was among the first privacy tech-

iques to address publicly releasing data in a privacy-preserving

anner. Roughly speaking, k-anonymity seeks to blend a single

ata owner’s personal attribute with at least k other data own-

rs such that the single data owner is indistinguishable from k − 1

ther data owners. For example, if a particular data owner’s record

eporting a particular disease is publicly released with 10 0 0 other

ata owners records with the same disease, the data owner is in-

istinguishable from 999 other data owners. 

However, there are known impossibility results for attempts to

reserve privacy while releasing exact answers. Dinur and Nissim

howed in 2003 that it is impossible to reveal exact aggregation in-

ormation while simultaneously preserving privacy (against a poly-

omial adversary) [5] . Thus, perturbation must be injected in or-

er to guarantee privacy (privacy defined as an adversary is un-

ble to determine the value of a targeted individual with a prob-

bility greater than 50%) [5] . Alternatively, noiseless privacy has

een proposed which does not add additional privacy noise. How-

ver, noiseless privacy requires strong adversary assumptions such

s the adversary has limited or no auxiliary information and is

estrictive regarding multiple queries and composability [6] . Thus,

n order to have Open Shared Data, on Smart City or larger scale,
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/adhoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.adhoc.2018.05.009&domain=pdf
mailto:jjoy@cs.ucla.edu
mailto:dylangray9@cs.ucla.edu
mailto:ciaran@cs.ucla.edu
mailto:gerla@cs.ucla.edu
https://doi.org/10.1016/j.adhoc.2018.05.009


J. Joy et al. / Ad Hoc Networks 80 (2018) 16–30 17 

t  

g

 

r  

s  

i  

d  

T  

n  

i

 

p  

v  

i  

d  

t  

a  

g  

i  

f  

p  

v

 

t  

m  

s  

e  

i  

b

 

r  

p  

t  

o  

c  

t  

n  

l

 

v  

t  

p  

t  

s  

B  

C  

a  

o  

d  

a  

u  

K  

w  

g  

t  

a

 

p  

c  

e  

t  

T  

c  

c  

s  

s  

s  

k  

t

 

c  

i  

a  

g  

r  

d  

c

2

 

a  

a  

b  

t  

g  

u

 

d  

a  

s  

p  

p  

t  

s  

u  

i  

t  

p  

[

 

a  

s  

a  

b  

t  

t  

s

 

g  

d  

b  

d  

v  

a  

n  

l

 

i  

1  

m  

m  

p

 

d  

a  

t  

t  

t  

e  

t

here will be some notion of absolute error or distance from the

round truth due to the required perturbation. 

Differential privacy is one such privacy definition which enables

ealisation of this concept, and it is currently viewed as the gold

tandard. Roughly speaking, differential privacy says that the abil-

ty of an adversary to inflict harm should be essentially indepen-

ent of whether any individual opts in to or out of, the dataset [7] .

hus, a data owner may safely utilise differential privacy tech-

iques when sharing their personal data, as it enables them control

nsight into their personal information. 

The Laplace mechanism satisfies differential privacy by adding

rivacy noise independent of the database size [8] by drawing pri-

acy noise from the Laplace distribution. The Laplace mechanism

s calibrated to the max difference between any two rows in the

atabase. That is, the noise is sufficient to protect the max leakage

hat any particular data owner induces. For example, first a service

ggregates all the data owners truthful responses. Then, the ag-

regation service draws from the Laplace distribution by calibrat-

ng the variance according to the desired privacy strength. Drawing

rom other distributions such as Gaussian also satisfies differential

rivacy, though the Laplace mechanism provides differential pri-

acy and Gaussian provides ( ε, δ)-differential privacy [9] . 

Now, consider if the Laplace mechanism is used and we desire

o improve the privacy strength. The privacy strength of a given

echanism is determined by the epsilon ε value, which corre-

ponds to the privacy loss measured as the ratio of the max differ-

nce between any two differing outputs. Naturally, it follows that

ncreasing the value of ε adds privacy noise mitigating any utility

enefits as the privacy noise increases. 

Another observation is that the use of the Laplace mechanism

equires each individual to truthfully respond, relying on the out-

ut perturbation to provide privacy. This requires extra caution in

he sensitive queries posed. For example, suppose we query every-

ne at the Brooklyn Bridge to understand how many people are

urrently at the Brooklyn Bridge. Regardless of the cryptographic

echnique or privacy mechanism used, the act of responding sig-

als to an adversary that the data owner was indeed at the Brook-

yn Bridge. 

In this paper, we present the K Privacy mechanism. K Pri-

acy achieves scalable privacy by increasing the size k of the par-

icipating data owners to provide privacy protection. The queried

opulation is increased beyond those at the Brooklyn Bridge, say

o the entire New York City metropolitan area. Thus, the act of re-

ponding no longer signals that the data owner is at the Brooklyn

ridge. The data owner plausibly is now anywhere in New York

ity. At the same time, K Privacy preserves the absolute error. The

bsolute error does not increase or expand due to the distortion

f the underlying truthful population distribution (e.g., the query

istorts and decreases the percentage from 100% of data owners

t the Brooklyn Bridge to less than 1% of the New York City pop-

lation is currently at the Brooklyn Bridge). Additionally, in our

 Privacy mechanism, data owners perform cryptographic private

rites which dissociate the identifier from the data value. The ag-

regation operators also perform multi-party computation (MPC)

o protect against malicious data owners that try to corrupt the

ggregate answer. 

We evaluate the scalability and accuracy of our privacy-

reserving approach utilizing a vehicular crowdsourcing scenario

omprising of approximately one million records. In this dataset,

ach vehicle reports its location utilizing the California Transporta-

ion Dataset from magnetic pavement sensors (see Section 8.1 ).

o demonstrate the efficiency and scalability of our approach, we

rowdsource and privately write 128,0 0 0 vehicle (data owner) lo-

ations in under a minute with a key size of less than 15 KB, a

quare root reduction compared to the trivial solution whose key

ize would be linear in the number of data owners (i.e., the key
ize is the number of data owners times the message bit size). This

ey size reduction allows us to increase the database size to simul-

aneously accommodate hundreds of thousands of data owners. 

This work demonstrates, for the first time, that personal data

an be crowdsourced at scale with constant error(preserving the

nformation content of interest to upstream aggregators and an-

lysts), strong privacy guarantees, protected with scalable crypto-

raphic private writes, and accurately disclosed. We believe this

epresents an exciting new contribution to open data science,

riven by the need for privacy-preserving crowdsourcing in mobile

loud contexts (e.g., traffic management). 

. Related work 

Privacy definitions. Differential privacy [8–11] has been proposed

s a privacy definition such that anything that can be learned if

 particular data owner is added to the database could have also

een learned before the data owner was added. A data owner is

hus “safe” to participate as statistical inferences amongst the ag-

regate are learned yet specific information regarding the individ-

al is not learned. 

However, careful consideration needs to be done when applying

ifferentially private mechanisms in practice. For example, there is

 drawback to the Laplace mechanism in graph datasets such as

ocial networks [12,13] or vehicle commuting patterns. Even if a

articular data owner does not participate, their friends that do

articipate leak information that can be used to deprivatize the

argeted data owner (e.g., shadow profiles). For example, it is pos-

ible to learn political beliefs or sexual orientation even if a partic-

lar individual does not participate and maintain an active profile

n an online social network. An adversary simply needs to analyze

he similarity metrics amongst the social circles that a data owner

articipates in to understand politics beliefs or sexual orientation

14–18] . 

Furthermore, even if the graph structures of the social network

re eventually anonymized and released, an adversary needs to

imply participate and influence the graph structure (e.g., joining

 social network) to learn and influence the actual social graph

efore it’s privatized and released. Thus, to provide stronger pro-

ection a mechanism must also perturb the underlying structure of

he data itself yet preserve accuracy as the underlying distribution

tructure becomes distorted. 

Sampling can be applied to weaken the associations within a

raph structure. This is achieved whereby responses are randomly

iscarded in order to reduce the the graph dependencies leaked

y a targeted individuals connections. The severed connections re-

uces the social circle size and makes it challenging for the ad-

ersary to make similarity inferences from reduced social circles

lone. Thus, it has been shown that the strength of privacy mecha-

isms are increased by applying sampling and reducing the privacy

eakage [13,19–21] . 

Another popular technique which satisfies differential privacy

s the randomized response mechanism, originally proposed in the

960s [22,23] . Randomized response has been shown to be opti-

al in the local differentially private model [24] and is used by

any companies today (e.g., Apple, Google [25] ) due to its sim-

licity while satisfying the differential privacy guarantee. 

However, these protocols, such as Rappor [25] , require an inor-

inate amount of samples, yet still do not preserve utility. For ex-

mple, even if 1 billion reports are collected, statistics from close

o 1 million reports may not show up in the analysis. Thus, these

ype of local differentially private protocols are best suited for

racking heavy-hitters (e.g., counting the most commonly occurring

lements in peaky power-law distributions) [26] . We elaborate fur-

her in Section 4.3 . 
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Some protocols which leverage randomized response style

mechanisms have made assumptions that the majority of the un-

derlying truthful population truthfully responds “Yes” (e.g., the per-

centage is greater than 2/3 or 3/4) in order to preserve accuracy.

However, it’s not clear what privacy guarantees will be provided

as any adversary is able to successfully guess with greater than

50% probability the value of any data owner in such a population.

For example, suppose our query is how many home owners re-

side within 15 blocks from the beach, yet we ask only those home

owners within 20 blocks from the beach. 

Zero-knowledge privacy [12] is a cryptographically influenced

privacy definition that is strictly stronger than differential pri-

vacy. Zero-knowledge private mechanisms add a sampling step

to distort the underlying structure. For example, crowd-blending

privacy [13] is weaker than differential privacy; however, with

a pre-sampling step, satisfies both differential privacy and zero-

knowledge privacy. However, these mechanisms are suited for the

trusted centralized system model. A single database breach would

violate all previous privacy guarantees, as each data owner’s exact

and unprotected answer is recorded in the database. Additionally,

zero-knowledge private mechanisms rely on aggressive sampling to

achieve strong privacy, which significantly degrades accuracy esti-

mations. 

Distributional privacy [27] is a privacy mechanism which says

that the released aggregate information only reveals the underlying

ground truth distribution and nothing more. Each data owner is

protected by the randomness of the other randomly selected data

owners rather than by adding explicit privacy noise to the output.

The indistinguishability from the underlying distribution protects

individual data owners and is strictly stronger than differential pri-

vacy. However, it is computationally inefficient though can work

over a large class of queries known as Vapnik-Chervonenkis (VC)

dimension. 

Sampling. Sampling whereby a centralized aggregator randomly

discards responses has been previously formulated as a mechanism

to amplify privacy [13,19–21,28] . The intuition is that when sam-

pling approximates the original aggregate information, an attacker

is unable to distinguish when sampling is performed and which

data owners are sampled. These privacy mechanisms range from

sampling without a sanitization mechanism, sampling to amplify

a differentially private mechanism, sampling that tolerates a bias,

and even sampling a weaker privacy notion such as k-anonymity

to amplify the privacy guarantees. 

However, sampling alone has several issues. First, data owners

are not protected by plausible deniability as data owners respond

truthfully and never a contradictory “No” response. Second, the

estimation of the underlying truthful “Yes” responses quickly de-

grades as we increase the population that truthfully responds “No”,

due to the sampling error. 

Multi-party computation. Multi-party computation (MPC) is a se-

cure computation model whereby parties jointly compute a func-

tion such that each party only learns the aggregate output and

nothing more. However, MPC mechanisms that release the exact

answer has no strong privacy guarantees against active privacy at-

tacks, particularly when the data is publicly published. 

A participant that does not perturb their responses and pro-

vides their exact answer is easily attacked by an adversary that

knows the values of n − 1 participants. For example, an adversary

first runs a counting query that includes all n data owners and

then runs a second counting query over n − 1 data owners (the

targeted data owner is the excluded row). Subtracting the two re-

sults reveals the value of the targeted data owner. 

In contrast, the differential privacy model assumes a strong

adversary that knows the n − 1 data owner values. In this pa-

per we combine MPC and differential privacy by introducing a

sampling-based privacy mechanism that maintains constant error
nd show a performance optimization for a new cryptographic

rimitive named Function Secret Sharing [29] . 

Homomorphic cryptography. Homomorphic cryptography enables

omputation over encrypted data without ever requiring access to

he plaintext data. However, applying homomorphic cryptography

lone to compute exact aggregate statistics does not provide pri-

acy protection and is vulnerable to the same n − 1 adversarial at-

acks as multi-party computation. Typically, such cryptographic ap-

roaches are combined with differentially private mechanisms in

rder to protect data owners. 

Private data upload. Wang et al. [30] employed and extended

he function secret sharing primitive to enable efficient private

nformation retrieval operations that protect the data owner’s

ueries from being learned by the database servers. They proposed

n optimization by using the Matyas-Meyer-Oseas one-way com-

ression function as an alternative to the heavy AES operations for

he two party case. Wang et al. achieves a 2.5x speedup by uti-

izing one-way compression functions. However, our K Privacy also

emonstrates a one order of magnitude improvement over the de-

ault implementation of the function secret sharing protocol for the

ulti-party database aggregator scenario. 

. Threat model 

The attack: an adversary can utilize the database size (num-

er of participants) to deduce if a particular individual is included.

owever, the exact population (database) size or exact number

f participating data owners is not published or released. This

itigates auxiliary attacks whereby the adversary uses the exact

ounts to reconstruct the database. 

The attack: an adversary can individually inspect the responses

f each data owner to ascertain their truthful response. However,

e select sampling probabilities less than 50% so that an adver-

ary does not gain an inference advantage of greater than 50%. We

lso require a distributed set of aggregators whereby at least one

onest aggregator does not collude with the others (e.g., a privacy

atchdog like the EFF). 

The attack: only a single honest data owner (or very few data

wners less than k ) participate allowing an adversary to easily de-

rivatize the honest data owner. However, the aggregation parties

roceed in epochs where they only combine their results if at least

 data owners (a threshold that can be configured) participate.

he honest aggregation party may refuse to share their results

ith the other aggregation parties thereby halting the protocol,

f the number of participating data owners is below the desired

hreshold. 

Differential privacy guarantee. The protocol we propose is a 2

ound protocol. However, it is 2 rounds in the sense that 2 dif-

erent values are uploaded by a single data owner. However, these

alues are not able to be linked to each other due to the crypto-

raphic private write in Section 6 . 

The attack: a network adversary attempts to drop the upload of

he 2nd round, in order to isolate the value of a single data owner

n round 1 to deprivatize the data owner and learn their truthful

alue. However, round 1 and round 2 are sent as a tuple 〈 round 1 ,

ound 2 〉 , so if any round is dropped by the network adversary both

ounds are dropped. 

Pollution attacks. In this work we consider three different pol-

ution attacks : (1) a malicious data owner who attempts to cor-

upt the private write by attempting to write to multiple rows of

he database instead of a single row (2) a malicious data owner

ho answers a query with a single, large value in order to inflate

he aggregate sum (3) a malicious data owner who repeatedly an-

wers a query within a single epoch. More details can be found in

ection 7 . 
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1 For instance with a 60% truthful population, the answer to the first toss is 0 . 6 ×
0 . 85 = 0 . 51 and the answer to the second toss is (1 − 0 . 85) × 0 . 3 = 0 . 045 
In order for the aggregators to safely accept a particular data

wner’s contribution, each share must be verified to be only write

o a single row, i.e. the shares should resolve to unit vectors. The

ggregators perform multi-party computation for each data owner

n order to verify the FSS shares. We utilize recent constructions in

SS verification that do not rely on any public-key primitives [31] . 

The observation is the following: the dot product of any unit

ector with itself is one, while the dot product of a non-unit vector

s the square of the magnitude. The data owners submit blinded

hares to each aggregator and then compute over the blinded

hares so that the actual unit vector (i.e. data owner actual re-

ponse) is not revealed. The aggregators perform an MPC to ver-

fy that the dot product of the blinded shares with itself evaluates

o one, ensuring that the shares are properly formed. As long as

here is at least one honest aggregation party, no aggregator learns

hich database row is written to. Invalid FSS shares can be quickly

ORed out of the intermediate results once they are detected. Fur-

her details of the scheme can be found in the Section 7 . 

. Warm up construction 

Let us consider first a warm up scenario whereby each data

wner privatized their truthful response utilizing the randomized

esponse privacy mechanism and then privately uploads with an

nformation theoretic guarantee. 

First, we explain how we discretize real-numbered values to

ntegers. We then formally describe the randomized response

echanism. Then, we describe the information-theoretic private

pload mechanism. Finally, we integrate both techniques and

how the limitations, in particular, constant error is not main-

ained as the non-truthful population increases. In addition, the

nformation-theoretic private upload requires a keysize on the or-

er of the database size making it prohibitively expensive for hun-

reds of thousands of data owners. We motivate the need for a

ore sophisticated sampling based privacy mechanism (the K Pri-

acy mechanism) and more sophisticated techniques for crypto-

raphic compression. 

.1. Goal 

Our primary goal is to enable large scale private querying of the

opulation utilizing sampling mechanisms while maintaining con-

tant error. For example, suppose we query the number of vehicles

n a busy stretch of the highway. We could query only those at

 particular stretch of the highway. However, we would know the

tretch of the highway location of any participating data owner.

hus, the privacy protection is quite limited regardless of any per-

urbation performed for this particular query. 

The privacy protection would be improved if we query everyone

n the city. The additional data owners provide plausible deniabil-

ty by increasing the potential pool of candidates that sometimes

espond “Yes” indicating they are at the particular stretch of high-

ay. Now, if we know that someone participated in the query all

e can immediately deduce is they are “somewhere” in the city. 

More generally, let Yes pop refer to the truthful “Yes” fraction of

he population and No pop refer to the truthful “No” fraction of the

opulation. We seek to increase the No pop by expanding the query

o include more participating data owners. This results in lowering

he percentage of the Yes pop . Using the previous example, querying

nly those at the particular stretch of the highway would result

n the Yes pop being 100%. Expanding the query to the city would

educe this percentage to say 5% or even 1% or lower. 

Query. The query is posted on the web. Data owners periodi-

ally check the web and download the query. The query is persis-

ent and is set to expire days or weeks in the future. 
.2. Discretization 

We illustrate the scheme using location coordinate data, al-

hough the discretization scheme can be employed for all real val-

ed data. Suppose a data owner currently on London Bridge par-

icipates in the protocol. First, the location is discretized to a lo-

ation identifier (ID) as seen in Fig. 1 . For example, using a 16

it identifier provides 65,536 possible locations, which covers a

4 x 64 mile square with 0.25 mile sections for a total of 4,096

quare miles. For comparison Paris is 41 square miles, London is

07 square miles, New York City is 305 square miles [32] . In Fig. 1 ,

ondon Bridge corresponds to location ID 8. 

.3. Sampling error 

We now examine how the Randomized Response [22,23] mech-

nism grows in error as the No pop increases. We first formally de-

cribe the Randomized Response mechanism and then describe

ow the sampling error increases with the population. We will

ater show in Section 5 how to preserve the utility. 

(Randomized response) We use two independent and biased

oins. Let π1 and π2 refer to the heads probabilities of the first

nd second biased coin toss respectively. The coin toss parameters

re published publicly while the number of data owners is private

nd needs to be estimated. 

 ri v atized V alue Yes = 

{ 

1 with probability 
π1 + (1 − π1 ) × π2 

0 otherwise 
(1)

That is, the Yes pop subpopulation responds “Yes” with probabil-

ty π1 + (1 − π1 ) × π2 . Otherwise they respond “No”. 

 r i v atized V alue N o = 

{ 

1 with probability 
(1 − π1 ) × π2 

0 otherwise 
(2)

That is, the No pop subpopulation responds “Yes” with probability

(1 − π1 ) × π2 . Otherwise they respond “No”. 

(Expected value) We now formulate the expected value in order

o carry out the estimation of the underlying population. The ex-

ected value of those that respond ‘1’ (i.e., privatized “Yes”) is the

um of the binomial distribution of each subpopulation. 

E[1] = π1 × Yes pop + (1 − π1 ) × π2 × (Yes pop + No pop ) (3)

(Estimator) We solve for Yes pop by the following. Let the aggre-

ated privatized count E[1] defined in Eq. (3) be denoted as Pri-

ate Sum . 

Yes pop = 

P ri v ate Sum − (1 − π1 ) × π2 × (Yes pop + No pop ) 

π1 

(4) 

That is, we first subtract from Private Sum of the “privacy

oise”. We then divide by the first flip π1 which is the sampling

arameter which determines how frequently a data owner truth-

ully responds “Yes” from the Yes pop subpopulation. 

(Sampling error) Suppose published parameters of the coin

osses are configured independently with π1 = 0 . 85 , π2 = 0 . 3 and

00 data owners. We estimate the underlying “Yes” truthful popu-

ation using Eq. (4) by aggregating the privatized responses from

ll data owners, subtracting the expected value of (1 − 0 . 85) ×
 . 3 × 100 and dividing by 0.8 1 . 

However, a drawback to the randomized response mechanism

s that the estimation error quickly increases with the population

ize due to the underlying truthful distribution distortion. For ex-

mple, say we are interested in how many vehicles are at a popular
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Fig. 1. Locationdiscretization. Each location (latitude,longitude) is discretized to a location identifier which corresponds to a 0.25 square mile block. London Bridge corresponds 

to location ID 8. 
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stretch of the highway. Say we configure π1 = 0 . 85 and π2 = 0 . 3 .

We query 10,0 0 0 vehicles asking for their current location and only

100 vehicles are at the particular area we are interested in (i.e., 1%

of the population truthfully responds “Yes”). The standard devia-

tion due to the privacy noise will be 21 2 which is slightly tolera-

ble. However, a query over one million vehicles (now only 0.01% of

the population truthfully responds “Yes”) will incur a standard de-

viation of 212. The estimate of the ground truth (100) will incur a

large absolute error when the aggregated privatized responses are

two or even three standard deviations (i.e., 95% or 99% of the time)

away from the expected value, as the mechanism subtracts only

the expected value of the noise. 

We desire better calibration over the privacy mechanism and a

mechanism which maintains constant error as the No pop popula-

tion scales up. We introduce the K Privacy mechanism in the next

section. Though first, we examine how to ensure that data owners

are able to privately upload their responses. 

4.4. Private upload 

Now consider that we would like to write into a database with-

out any of the database operators learning which row we wrote

into. Knowledge of the row and thus data uploaded by the owner

would allow the operator to track the owner over subsequent

epochs even if the data is privatized. 

We assume a distributed database setting such that, so long as

one database operator remains honest and does not collude with

other database operators, it is not possible to learn which database

row was written into (as long as there are at least two data owners

participating). The data owner should continuously re-select a new

database row at random every epoch. 

(Two party) Let us first consider two operators and two

databases. The protocol proceeds as follows as shown in Fig. 2 . 

Assume the database is represented by n rows. Each data owner

uploads a message of size m bits, in a randomly chosen row. With-

out loss of generality, for our example we describe now we assume

m is one bit. Thus the database is a bitstring. Extending to a mes-

sage size of more than one bit would only require a larger finite

field (instead of finite field size 2 we could choose a prime num-

ber larger than the desired message size in bits). 

Each data owner begins with a bitstring of length n (the size

of the database). The data owner uniformly at random selects an

index of the bitstring and sets its message value (assume it is to

1). Every other index is set to 0. 
2 ( 
√ 

(1 − 0 . 85) × 0 . 3 × 10 , 0 0 0 ) 

X  

v  

t  
Next, the data owner creates a key by generating a random bit-

tring of length n . 

The data owner then XORs the randomly generated bitstring

ey with the bitstring containing the message (that has only one

ndex set) to produce the encrypted bitstring. 

The data owner then transmits the encrypted bitstring to one

atabase operator and the key bitstring to the other database op-

rator. The data owner may randomly decide which database op-

rator to send the encrypted and key bitstrings. 

The same process repeats for each data owner. That is, a second

ata owner repeats the process of uniformly at random selecting

n index of the bitstring to set to 1, generating a key bitstring, and

ncrypting the bitstring. 

As the database operators receive each bitstring (either en-

rypted or key bitstring), each database operator cumulatively

ORs the bitstrings. 

Finally, at the end of an agreed epoch, the database operators

hare the cumulatively XORed bitstrings with each other. By doing

o, they are able to reconstruct a database consisting of each data

wners message at their specified indexes. The privacy guarantee

s that the database operators are unable to determine which data

wner wrote to which index, as long as there are at least two par-

icipating data owners and there is at least one database operator

hat does not collude with any other. (There is also an assumption

hat the data owners do not write to the same index, though colli-

ions can be probabilistically avoided by sizing the database large

nough to minimize the likelihood of collisions). 

(Multi-party) Now, to generalize the 2 database operators to Z

atabase operators, the protocol proceeds as follows. 

The data owner has a bitstring of length n. The data owner uni-

ormly at random selects the index of the bitstring to write to and

ets the value to 1. Every other index is set to 0. 

Next, the data owner generates Z − 1 random bitstrings of

ength n. These bitstrings serve as the “virtual” single key. 

The data owner cumulatively XORs the Z − 1 bitstring keys with

he bitstring containing the message (where only index is set) to

roduce the encrypted bitstring. 

The data owner transmits each separate bitstring key to a dif-

erent database operator and the encrypted bitstring to the other

atabase operator. The data owner may randomly decide which

atabase operator to send the encrypted and key bitstrings. 

The multi-party protocol then proceeds the same as the previ-

us two database operator case. Each database operator cumula-

ively XORs the received bitstrings and then shares the cumulative

OR results with each other to reconstruct the database. The pri-

acy guarantee holds that each database operator is unable to de-

ermine which data owner wrote to which index, as long as there
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Fig. 2. Each data owner uniformly at random selects a slot to write their location ID. The aggregators are unable to determine which data owner wrote to a particular slot, 

as long as there is one honest aggregator who does not collude. The aggregate count of each location ID is computed as the final step. 
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re at least two participating data owners and there is at least one

atabase operator that does not collude with any other. 

(Key Size) The issue is that the key size is the length of the

atabase n. Suppose the number of data owners is on the order

f millions and the database row size is several hundred bits. The

itstring size will be of the order of several hundred MBs, which is

rohibitively expensive for mobile devices and edge networks con-

inually uploading every few minutes. 

We could compress each of the key bitstrings by using a pseu-

orandom generator (PRG) for the Z-1 keys. However, we somehow

ust compress the bitstring containing the message (that has only

ne index set). Unfortunately, by definition of a PRG, it is compu-

ationally difficult to generate a PRG seed that expands to the de-

ired bitstring. We must utilize a more sophisticated approached

o enable cryptographic compression of the bitstring. We utilize a

ew primitive named Function Secret Sharing (FSS) [29] and show

 performance optimization by selective choice of the parameters

n Section 6 . 

. K Privacy mechanism 

We now describe our K Privacy mechanism that achieves con-

tant error even where the population which does not truthfully

espond “Yes” ( No pop ) increases. We illustrate the scheme using lo-

ation coordinate data, although the scheme can be employed for

ll real valued data. 

Illustration. To illustrate and demonstrate the K Privacy mech-

nism, we employ the following example. Suppose we are inter-

sted in the distribution of vehicles across London. We query every

ehicle in London asking for their location coordinates. Each data

wner responds to a binary version of the binary query such as

Are you at the London Bridge?”. The mechanism has two rounds

nd proceeds as follows. 

Suppose a particular data owner is at London Bridge. First, the

ocation is discretized to a location identifier (ID) as described in

ection 4.2 . In this case the location ID is 8 as shown in Fig. 1 . 

Next, the data owner tosses a multi-sided die. One side sam-

les whether the data owner should respond truthfully for their

ocation ID. The remaining sides selects a location ID for the data

wner to respond. 
Suppose in the first round the data owner is sampled and se-

ected. The data owner should respond “Yes” (they are at London

ridge). 

In the second round the sampled data owner should abstain

rom responding at all. 

A privatized sum is computed by aggregating the “Yes” counts

n each round. 

Finally, estimation occurs by subtracting the privatized sum in

ound one from round two and dividing by the sampling parame-

er. 

The following three privacy observations are made. First, a ma-

ority of the population provides privacy noise by randomly re-

ponding either “Yes” or “No” regardless of their truthful response.

econd, plausible deniability is provided as each data owner proba-

ilistically responds opposite of their truthful response. Finally, ev-

ry data owner acts as a potential candidate for the truthful pop-

lation. Our assumption is that every data owner is active in both

ounds and only the aggregate counts are released. 

.1. Binary value 

We now formally introduce the binary value K Privacy mecha-

ism whereby a data owner responds either “No” or “Yes”, either

 or 1 respectively. 

(Round one) In the first round each data owner tosses a three

ided die with probabilities π s , πYes , and πNo . Let π s be the prob-

bility that a data owner truthfully responds. Otherwise, regardless

f their truthful response let πYes be the probability that a data

wner randomly responds “Yes” and πNo be the probability that a

ata owner randomly responds “No”. 

ound One Yes = 

{ 

1 with probability πs 

1 with probability πYes 

0 with probability πNo 

(5) 

ound One No = 

{ 

1 with probability πYes 

0 with probability πs 

0 with probability πNo 

(6) 

At this point, privacy noise has been added and thus the un-

erlying truthful distribution is becoming distorted as the num-

er of non-truthful data owners participate. The distortion makes

t difficult to estimate the the underlying truthful distribution as
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we have one equation and two variables (number of truthful and

non-truthful data owners). 

Thus, we execute a second round while fixing the two variables

enabling us to solve for the truthful population estimate. 

(Round two) In the second round only the data owner which

was selected and sampled with probability π s does not participate

(effectively writes 0). The remaining data owners stay with the re-

sponses from round one. 

Round T wo = 

{ 

∅ with probability πs 

1 with probability πYes 

0 with probability πNo 

(7)

Now combining the second round with the first round we ob-

tain accurate estimations as we see below. 

(Expected values) We now formulate the expected values as fol-

lows. The subscript refers to the round number. That is, 1 1 refers

to output 1 and round 1. The first round of expected values are: 

E[1 1 ] = πYes × T OT AL pop + πs × Yes pop 

E[0 1 ] = πNo × T OT AL pop + πs × No pop 

(8)

That is, both the Yes pop and No pop contribute both “Yes” and

“No” responses while a small subpopulation responds truthfully. 

The second round of expected values are: 

E[1 2 ] = πYes × T OT AL pop 

E[0 2 ] = πNo × T OT AL pop 

(9)

That is, the small subpopulation from round 1 samples out

and does not participate (effectively writes 0). The remaining data

owners randomly respond “Yes” or “No” while remaining at their

round one responses. 

(Estimator) We solve for the Yes pop population by subtracting

round one by round two as follows. Let P ri v ate Sum “ Yes ′′ , 1 refer to

the aggregated privatized counts for output space “Yes” and round

1. 

es pop = 

P ri v ate Sum “ Yes ” , 1 − P ri v ate Sum “ Yes ” , 2 

πs 

(10)

That is, we subtract the privatized sum of output space “Yes”

round 1 from the output space “Yes” of round 2. The result is the

sampled “Yes” aggregate. We then obtain the estimation by divid-

ing by the sampling parameter. 

The sampling error affects only the Yes pop as seen in Eq. (8) .

Thus we are able to scale the No pop yet retain constant error. Plau-

sible deniability is provided as each data owner may respond to

either output space based on the coin toss parameters. 

5.2. Multiple (simultaneous) values 

We now examine how to privatize the multiple choice scenario

whereby there are multiple values and the data owner should se-

lect a single value. We extend the binary value mechanism defined

in the previous section. Multiple values are applicable to most real-

world scenarios (as opposed to the binary value mechanism). The

location coordinate grid scenario, explained in Section 4.2 and il-

lustrated in Fig. 1 , explains a scenario where there are multiple

locations (i.e., location IDs) and the data owner is currently at a

single location ID. Recall that the data owner’s truthful response is

discretized to an integer value greater than 0. 

However, we desire more than simply randomizing multiple

choices. The K Privacy mechanism has each data owner respond

with multiple, simultaneous, and contradictory responses while

maintaining constant error. For example, if there are 9 locations,

each data owner probabilistically responds they may be in 9 loca-

tions simultaneously. 

Suppose a particular data owner is at the London Bridge. The

first round proceeds as follows. For the location they are currently
t (e.g., London Bridge) the data owner flips a biased coin and if

eads responds truthfully. When queried about other locations the

ata owner randomly also responds they are at the location. 

Say the particular data owner from Fig. 1 was sampled and se-

ected. Their response should be with location ID 8. In addition,

ay they were selected for location IDs 1,2,4,5. Thus, the round one

esponse would be 1,2,4,5,8. 

In the second round, the data owner should not respond they

re at the London Bridge. The remaining responses stay. Thus, the

ound two response would be 1,2,4,5. 

A privatized sum is computed by aggregating the location ID

ounts in each round. 

The estimated count for each location ID value is then calcu-

ated by subtracting the privatized sum of the second round from

he first round and then dividing by the sampling parameter. 

There are several privacy observations. Similar to the binary

alue scenario in Section 5.1 , both privacy noise and plausible de-

iability is provided. However, now a data owner responds with

ultiple contradictory responses claiming to be in multiple loca-

ions at once. At the same time in the second round, all selected

nd sampled data owners across every location will silently not

articipate. Every data owner now blends with every other data

wner. 

We now formally describe the multiple (simultaneous) values K

rivacy mechanism. 

(Round one) Let V represent all outputs for which the data

wner does not truthfully respond “Yes”. Let V 

′ be the special out-

ut for which the data owner truthfully responds “Yes”. 

In the first round the data owner should truthfully respond ac-

ording to the sampling parameter only for their truthful output

alue. For all other values the data owner randomly responds re-

ardless of their truthful value. 

ound One = 

{ 

V 

′ with probability πs 

V, V 

′ with probability πV 

0 with probability 1 − πV − πs 

(11)

That is, a data owner responds with multiple contradictory re-

ponses. 

(Round two) In the second round all data owners stay with their

ound one response and respond randomly regardless of their un-

erlying truthful response. All the data owners that were sampled

nd selected to respond truthfully do not participate in the second

ound. 

ound T wo = 

{ 

∅ with probability πs 

V, V 

′ with probability πV 

0 with probability 1 − πV − πs 

(12)

That is, all truthful responses equally fall out from the equation.

(Expected values) The first round of expected values are as fol-

ows. 

[ V 1 ] = πV × T OT AL + πs × Yes pop (13)

That is, for each value both populations randomly contribute,

ith a small percentage contributing by responding truthfully. 

The second round of expected values are all the same regardless

f the underlying truthful response: 

[ V 2 ] = πV × T OT AL (14)

That is, everyone randomly contributes. The sampled and se-

ected percentage that truthfully responded in round one do not

articipate (effectively write 0) and respond now in round two. 

(Estimator) To solve for the YES population we subtract the sec-

nd round from the first round and iterate for each output value

s follows: 

 ES = 

P ri v ate Sum “ Yes ” , 1 − P ri v ate Sum “ Yes ” , 2 

π
(15)
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The sampled and selected population, by not participating in

ound two (effectively write 0), allows us to baseline the privacy

oise and perform estimation for the sampled truthful population. 

.3. Differential privacy guarantee 

K Privacy satisfies differential privacy as we show in this sec-

ion. We first examine the binary value mechanism and then the

ultiple value mechanism. The definition of differential privacy

an be found in the Appendix Appendix A . 

(Binary Value) The differential privacy leakage is measured as

he maximum ratio of the binary output space given the underly-

ng truthful answer is “Yes” and “No” respectively. 

In round one, the output space “Yes” is slightly more likely as

he truthful response is sampled in addition to being responded

andomly. In round two, there is no privacy leakage as both output

pace “Yes” and “No” are both equally likely and indistinguishable

iven the truthful answer is either “Yes” or “No” respectively. 

Thus, we are interested in the privacy leakage of output 1 round

 (1 1 ) as follows: 

DP = max 

(
ln 

(
Pr [1 1 | “ Yes ”] 

Pr [1 1 | “ No”] 

)
, ln 

(
Pr [1 1 | “ No”] 

Pr [1 1 | “ Yes ”] 

))
(16) 

Pr [1 1 | “ Yes ”] 

Pr [1 1 | “ No”] 
= 

πV ′ + πs 

πV ′ 
(17) 

Pr [1 1 | “ No”] 

Pr [1 1 | “ Yes ”] 
= 

πV ′ 

πV ′ + πs 
(18) 

DP = max 

(
ln 

(
πV ′ + πs 

πV ′ 

)
, ln 

(
πV ′ 

πV ′ + πs 

))
(19) 

(Multiple (simultaneous) values) The differential privacy leakage

s measured as the maximum ratio of the multiple output space

iven the underlying truthful answer is any combination of two

alues of the output space of size V . 

In round one, for any two outputs whereby a data owner would

ot truthfully respond with those values, the outputs are indistin-

uishable and there is no privacy leakage as the response is chosen

andomly. The only privacy leakage occurs when the data owner

ruthfully responds for their output space. 

For output V’, round 1 ( V 

′ 
1 
) , the privacy leakage is as follows: 

DP = max 

(
ln 

(
Pr [ V 

′ 
1 | V 

′ ] 
Pr [ V 

′ 
1 
|¬ V 

′ ] 

)
, ln 

(
Pr [ V 

′ 
1 |¬ V 

′ ] 
Pr [ V 

′ 
1 
| V 

′ ] 

))
(20) 

Pr [ V 

′ 
1 | V 

′ ] 
Pr [ V 

′ 
1 
|¬ V 

′ ] = 

πV ′ + πs 

πV ′ 
(21) 

Pr [ V 

′ 
1 |¬ V 

′ ] 
Pr [ V 

′ 
1 
| V 

′ ] = 

πV ′ 

πV ′ + πs 
(22) 

DP = max 

(
ln 

(
πV ′ + πs 

πV ′ 

)
, ln 

(
πV ′ 

πV ′ + πs 

))
(23) 

In round two, again there is no privacy leakage for those val-

es the data owner would not truthfully respond as the response

s chosen randomly. The only privacy leakage occurs for those sam-

led and selected data owners that do not participate (effectively

rite 0). 

For output V’, round 2 ( V 

′ 
2 
) , the privacy leakage is as follows: 

DP = max 

(
ln 

(
Pr [ V 

′ 
2 | V 

′ ] 
Pr [ V 

′ 
2 
|¬ V 

′ ] 

)
, ln 

(
Pr [ V 

′ 
2 |¬ V 

′ ] 
Pr [ V 

′ 
2 
| V 

′ ] 

))
(24) 

Pr [ V 

′ 
2 | V 

′ ] 
Pr [ V 

′ |¬ V 

′ ] = 

πV ′ − πs 

πV ′ 
(25) 
2 
Pr [ V 

′ 
2 |¬ V 

′ ] 
Pr [ V 

′ 
2 
| V 

′ ] = 

πV ′ 

πV ′ − πs 
(26) 

DP = max 

(
ln 

(
πV ′ − πs 

πV ′ 

)
, ln 

(
πV ′ 

πV ′ − πs 

))
(27) 

We then take the maximum leakage of round 1 ( Eq. (23) ) and

ound 2 ( Eq. (27) ). 

. Private data upload 

We now describe the Function Secret Sharing (FSS) [29] prim-

lgorithm 1 Gen 

p i (1 λ, x, y ) : Generate Shares 

1: Let G : {0,1} λ −→ {0,1} mμ be a PRG 

2: Let μ ← � 2 n/ 2 × 2 p−1 / 2 	 . Let ν ← � 2 n /μ	 
3: Use the higher and lower bits of the input x as a pair x =

(γ ′ , δ′ ) , γ ′ ∈ � ν	 δ′ ∈ � μ	 
4: Choose ν arrays A 1 , ..., A ν s.t. A γ ∈ R O p and A γ ′ ∈ R E p for all

γ ′ � = γ
5: Choose 2 p−1 random strings cw 1 , ..., cw 2 p−1 ∈ 0 , 1 mμ s.t.⊕ 2 p−1 

j=1 (cw j � G (s γ , j )) = e δ · b 

6: Set σi,γ ′ ← (s γ ′ , 1 · A γ ′ [ i, 1]) ‖ ... ‖ (s γ ′ , 2 p−1 · A γ ′ [ i, 2 p−1 ]) for all 1

≤ i ≤ p, 1 ≤ γ ′ ≤ ν . 

7: Set σi = σi, 1 ‖ ... ‖ ...σi,ν for 1 ≤ i ≤ p 

8: Let k i = (σi ‖ cw 1 ‖ ... ‖ cw 2 p−1 ) for 1 ≤ i ≤ p 

9: Return (k i , ..., k p ) 

tive and how it enables a nearly square root reduction of the

ey size. We then introduce our parameter optimization to achieve

ore than an order of magnitude improvement over the default im-

lementation. 

.1. Function secret sharing background 

Recall our earlier construction in Section 4.4 whereby data

wners privately upload data into a distributed database without

ny of the Z database operators learning into which row a par-

icular data owner wrote (assuming there is at least one honest

atabase operator that does not collude and there are at least two

onest data owners). Each data owner specifies their upload data

y uniformly at random selecting a row from the database to write

heir message. This selection of a single row a and writing a mes-

age m can be viewed as a point function F a whereby F a (x ) = m iff

 = a and 0 otherwise. 

The key idea of FSS to obtain the key size reduction is the

se of a pseudorandom generator (PRG) to compress the key size.

owever, as we previously saw simply using a PRG alone is not

nough as it’s not computationally feasible to find Z random seeds

hat cumulatively XORed together produce a desired output. We

an find Z − 1 random seeds, cumulatively XOR them together,

hen XOR with the desired output to find the correction word bit-

tring needed to XOR with the seeds to produce a desired output.

t is this observation that multi-party FSS exploits to achieve the

early square root key size reduction. 

FSS addresses the issue of the correction word being the length

f the database (thus the key size the length of the database) by

he use of a special matrix. Indexing into the matrix is done by

sing the lower and higher bits of the input to lookup into the

atrix. Each matrix row contains a set of PRG seeds. The expan-

ion of a particular subset of the PRG seeds are then combined by

OR with the correction word. The resultant bitstring is then the

ength of the correction word and contains both the desired output

s well as other random noise. Using the higher order bits of a as
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Fig. 3. (Vehicle counts) K Privacy Each vehicle reports it’s current location. 
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a lookup into the resultant bitstring will locate the desired output

within the resultant bitstring. All other inputs will produce random

noise. 

Thus, the cryptographic compression is achieved by the using

of the PRG combined with correction words with length roughly

the square root of the size of the database. Further details can be

found in the paper by Boyle et al. [29] . 

However, it turns out that by adjusting the length of the cor-

rection words and number of PRG seeds greatly impacts the per-

formance of the FSS protocols. We now explain our FSS parameter

optimization. 

6.2. Function secret sharing optimization 

FSS relies on symmetric cryptography. Thus, we utilize AES in

counter mode for the pseudorandom generator. 

There are two symmetric cryptography overheads that FSS in-

curs. The first is that the default FSS evaluation algorithm repeat-

edly evaluates the same seeds multiple times. The only difference

between each evaluation is that different positions of the seed ex-

pansion evaluation is used based on the input’s lower bits. The sec-

ond overhead is balancing the number of seeds with seed expan-

sions. 

Our algorithm optimization is described in Algorithm 6.2 and

Algorithm 2 EvaluateShare p i (k i ) : Evaluate Share 

1: Let μ ← � 2 n/ 2 × 2 p−1 / 2 	 . Let ν ← � 2 n /μ	 
2: Use the higher and lower bits of the input x as a pair

x = (γ ′ , δ′ ) , γ ′ ∈ � ν	 δ′ ∈ � μ	 
3: for j = 1 , ..., ν do 

4: y j ← Eval( j, k i ) 

5: Let result j ← (y j [1] ‖ ... ‖ y j [ μ]) 

6: end for 

7: Return (result 1 , ..., result ν ) 

Algorithm 6.2 . The share generation algorithm 6.2 , is the same as

Algorithm 3 Eval p i (ν′ , k i ) 
1: Let G : {0,1} λ −→ {0,1} mμ be a PRG 

2: Parse k i as k i = (σi , cw i , ..., cw 2 p−1 ) 

3: Parse σi as σi = s 1 , 1 ‖ ... ‖ s 1 , 2 p−1 ‖ ... ‖ s ν, 2 p−1 

4: Let y i ← 

⊕ 

1 ≤ j≤2 p−1 (cw j � G (s γ ′ , j )) where s γ ′ , j � = 0 

5: Return y i 

described in [29] . The difference is in the share evaluation. The

default implementation performs 2 n PRG seed initializations. How-

ever, the full PRG evaluation is the same for each value of γ ′ . Thus,

we need to perform ν PRG seed initializations instead of repeating

the same PRG evaluation. We do one evaluate per δ, which means

that we can reuse the same evaluated output and just take differ-

ent partitions for varying γ . The default FSS version evaluates δ
times the same seeds in order to extract the differing γ sections. 

Our second optimization is balancing the number of total seeds

generated and evaluated with the prg expansion length of each

seed. Increasing the length of the seed reduces the number of to-

tal seeds required. It’s faster to expand a single side as opposed to

multiple expansions of differing seeds. However, the cost is an in-

crease in the length of the key size. Thus, we chose our parameters

by performing microbenchmarks to understand the tradeoffs in. 

7. Pollution protection 

In order to guard the private writes against a single data owner

writing to multiple rows, we utilize a novel and efficient FSS
hare verification technique (which does not require any public-

ey primitives) that is performed by the aggregation parties [31] .

he FSS share verification ensures that each data owner writes a

nit vector (i.e., a single row). Details of the MPC technique can be

ound in the Appendix B . Our evaluation results can be found in

ection 8.3 . 

Next, to prevent a single answer, such as a large number, from

istorting the aggregate sum, we utilize a bit vector response

hich limits the data owner to only replying “No” (’0’) or “Yes”

’1’). 

Finally, data owners are authenticated to prevent Sybils and

ultiple responses within a single epoch. The authentication does

ot allow the aggregators to learn which row a data owner is writ-

ng to. Each data owner performs a cryptographic private write

hat is protected as long as there is at least one honest aggrega-

or who does not collude (as we previously shown in Section 6 ). 

Defining the error threshold for the number of malicious data

wners who falsify their responses (i.e., intentionally answering

No” instead of “Yes”) is not considered in this work. However, ef-

cient techniques exist which ensure commitment to the random-

zed response protocol [33] . 

. Evaluation 

We evaluate the accuracy of the K Privacy mechanism. Next, we

escribe the performance gains of the FSS parameter optimization.

inally, we evaluate the efficiency of the pollution protection tech-

ique. The K Privacy mechanism constrains the coin toss probabil-

ties to below 50%, to ensure the adversary is not given an advan-

age to statistically guess the data owner’s truthful response better

han 50% of the time. 

.1. Accuracy 

(PeMS Data) We evaluate the K Privacy mechanism over a real

ataset rather than with arbitrary distributions. We utilize the Cali-

ornia Transportation Dataset from magnetic pavement sensors [34]

ollected in LA \ Ventura California freeways [35] . There are a total

f 3865 stations and 999,359 vehicles total. We assign virtual iden-

ities to each vehicle. Each vehicle announces the station it is cur-

ently at. We select a single popular highway station. Every vehicle

t the station reports “Yes” while every other vehicle in the popu-

ation truthfully reports “No”. We evaluate over a 24 h time period.

 Privacy 1 has a sampling parameter of 45% and K Privacy 2 has a

ampling parameter of 25%. The randomized response mechanism

as π1 = 0 . 8 and π2 = 0 . 2 . 

Fig. 3 compares the K Privacy mechanism with the Randomized

esponse mechanism. K Privacy is able to maintain constant error

ven at 1 million vehicles, while the Randomized Response quickly

ncurs error. Upper bounds are shown with a 95% confidence inter-

al. 

We next examine the vehicle speed distribution across the free-

ays at evening rush hour. Fig. 6 is with the population at the
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Fig. 4. (Heart chest pain) Number of individuals out of 303 with specific types of 

heart related chest pain. 

Fig. 5. (Heart chest pain) Number of individuals out of 10,0 0 0 with specific types of 

heart related chest pain. 

Fig. 6. (Vehicle speed distribution) Lane 1 speed distribution. 

Fig. 7. (Vehicle speed distribution) Lane 1 speed distribution over 10,0 0 0 vehicles 

(only 354 are currently amongst the queried 3 lanes). 
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Fig. 8. (FSS Microbenchmark) Number of share evaluations (client share uploads) 

per second. Bigger is better. 
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pecific stretch of the freeway. Fig. 7 expands the query population

o 10,0 0 0 vehicles (9646) are not at the particular freeway stretch

eing monitored. The figures show the speed distribution whereby

here are 10 groups for the following speeds “1 − 10 ′′ is group 1,

11 − 20 ′′ is group 2, etc. Upper bounds are shown with a 95% con-

dence interval. 

(Heart data) We next evaluate over medical data. We utilize the

CI open data repository [36] for heart related data. Figs. 4 and 5
how the number of afflicted data owners with a particular type

f chest pain. The four types of chest pain are typical angina, atyp-

cal angina, non-anginal pain, and asymptomatic. Each group cor-

esponds to a particular chest pain and gender for a total of eight

roups. Fig. 5 scales the population to 10,0 0 0 whereby 303 are the

riginal dataset and the remaining 9697 data owners provide chaff.

he K Privacy mechanism maintains constant error and the ran-

omized response quickly incurs error. Upper bounds are shown

ith a 95% confidence interval. 

.2. Privacy 

Fig. 11 evaluates the privacy leakage comparing K Privacy and

he Randomized Response mechanism. K Privacy uses the equa-

ion defined in 5.3 to measure the privacy leakage. The Random-

zed Response mechanism privacy leakage is defined in the Ap-

endix A.1 . 

The coin toss parameters used in Fig. 11 has Randomized Re-

ponse f lip1 = 0 . 8 and f lip2 = 0 . 2 . K Privacy has a sampling pa-

ameter of 0.45. We could increase the value of the randomized

esponse flip 2 though the absolute error would grow even larger

han show in Fig. 3 . 

.3. Scalability 

FSS optimization We evaluate our implementation of non-

ttributable writes on Amazon EC2 with c4.2xlarge instances to

nderstand the impact of our optimization of the Function Secret

haring primitive. 

We first perform a microbenchmark to evaluate the improve-

ent of our optimization of evaluating shares to be performed by

he aggregators. Fig. 8 shows our microbenchmark for the 3 party

nd 5 party case. Our microbenchmark shows several orders of

agnitude improvement over of the default implementation. 

We examine the key size of each share as we increase the size

f the message that is privately uploaded. Fig. 12 shows a mod-

st increase in the key size as the message size increases. We then

valuate the generation of shares. We evaluate the trade-off of key

ize by expanding a single seed versus expanding multiple seeds

ith a smaller length. Fig. 9 shows the effect of the FSS optimiza-

ion on the time to generate shares. We achieve close to half a

eduction in share generation time. 

We next evaluate our evaluation optimization on Amazon EC2.

ig. 10 shows the effect of applying the FSS optimization for the

valuation of the shares as described in Section 6.2 . We are able

o achieve an order of magnitude improvement over the default

mplementation. 

Share verification. We now discuss the evaluation of our imple-

entation of the FSS share verification [31] . The three algorithms

or creating the blinding structure are “square”, “product”, and “in-

erse” (see Appendix B for more details) ( Fig. 12 ). 
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Fig. 9. FSS Share Generation. FSS versus FSS optimized client share upload. Smaller 

is better. 

Fig. 10. FSS Scaling Optimization. FSS versus FSS optimized (client share uploads) 

per second. Bigger is better. 

Fig. 11. (Privacy Leakage) K Privacy compared with randomized response privacy 

leakage as the coin toss probability increases. Higher epsilon means more informa- 

tion is leaked. 

Fig. 12. FSS keysize. 

Fig. 13. MPC verification benchmark. 
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Fig. 13 shows the scalability of the blinding operations. “Prod-

ct” is slightly faster than “square” as “product” must only do (p −
) multiplications, while “square” does (p − 1) exponent opera-

ions. “Inverse” is the slowest as it performs (p − 1) multiplications

nd then a finite field inverse, where p is the number of parties.

he MPC verification performed by the aggregation servers is on

he order of a couple hundred milliseconds and is extremely effi-

ient. 

. Conclusion 

In this paper, we present the K Privacy mechanism and demon-

trate how to (i) improve the privacy strength while preserving

tility, (ii) achieve scalable non-attributable writes, and (iii) pro-

ide protection against pollution attacks whereby a single data

wner may attempt to corrupt the entire database. To demonstrate

ts real-world applicability and practicality, the K Privacy mech-

nism was implemented on Amazon’s AWS cloud and shown to

calably achieve these properties. We believe this represents an

mportant and timely advance towards open and shared Internet

f Vehicles data. 

ppendix A. Differential privacy 

Differential privacy has become the gold standard privacy mech-

nism which ensures that the output of a sanitization mechanism

oes not violate the privacy of any individual inputs. 

efinition 1 [8,10] . ( ε-Differential Privacy). A privacy mechanism

an () provides ε-differential privacy if, for all datasets D 1 and D 2 

iffering on at most one record (i.e., the Hamming distance H () is

 ( D 1 , D 2 ) ≤ 1), and for all outputs O ⊆ Range ( San ()): 

sup 

 1 ,D 2 

Pr [ San (D 1 ) ∈ O ] 

Pr [ San (D 2 ) ∈ O ] 
≤ exp(ε) (A.1)

That is, the probability that a privacy mechanism San produces

 given output is almost independent of the presence or absence

f any individual record in the dataset. The closer the distributions

re (i.e., smaller ε), the stronger the privacy guarantees become

nd vice versa. That is, a larger ε means that the two dataset dis-

ribution are far apart and leaks more information. A single record

ill induce distinguishable output fluctuations. We desire smaller

values to induce ε indistinguishability . 

1. Randomized response privacy guarantee 

1.1. Privacy guarantee of randomized response 

The randomized response mechanism achieves ε-differential

rivacy, where: 

= max 

(
ln 

(
Pr [ Resp=‘Yes’ |‘Yes’ ] 

Pr [ Resp=‘Yes’ |‘No’ ] 

)
, ln 

(
Pr [ Resp=‘Yes’ |‘No’ ] 

Pr [ Resp=‘Yes’ |‘Yes’ ] 

))
More specifically, the randomized response mecha-

ism [23] achieves ε-differential privacy, where: 

= ln 

(
π1 + (1 − π1 ) × π2 

(1 − π1 ) × π2 

)
(A.2)

That is, if a data owner has the sensitive attribute A , then the

andomized answer will be “Yes” with the probability of ‘ π1 + (1 −
) × π ’. Else, if a data owner does not have the sensitive at-
1 2 
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ribute, then the randomized answer will become “Yes” with the

robability of ‘ (1 − π1 ) × π2 ’. 

ppendix B. Share verification 

We now describe the MPC protocol [31] run amongst the aggre-

ator parties to verify all data owner shares. The protocol does not

iolate data owner privacy and is extremely efficient as it does not

tilize any publick-key primitives and relies solely on finite field

perations. 

We first describe the MPC protocol in detail and then provide

n example. 

MPCprotocol Let p represent the number of parties participating

n the protocol. 

Let n represent the unit vector length (e.g., length of the bit

tring or number of database slots). 

Let m represent the number of bits of the message M . Let M ∈
 Z where Z is a relatively large prime number. 

Given F Z a finite field of characteristic Z where Z is a relatively

arge prime, let R be a blinding (randomization) matrix where the

he values in the first row are chosen uniformly at random over

 , ..., Z − 1 . 

This is a particular randomization matrix such that elements of

ach row is raised to the power of the first row, where the power

s equivalent to the row number. There will be a total of p rows,

ne for each party. That is, 

 = 

⎡ 

⎢ ⎣ 

r 1 r 2 ... r n 
r 2 1 r 2 2 ... r 2 n 

... ... ... ... 

r p 
1 

r p 
2 

... r p n 

⎤ 

⎥ ⎦ 

(B.1) 

We wish to secretly share a unit vector and verify that the

hares correctly sum to the unit vector. 

For example,

ˆ 
 = 

⎡ 

⎢ ⎣ 

0 

M 

... 

0 

⎤ 

⎥ ⎦ 

(B.2) 

The value can be m bits taking on a value from the finite field

f character of characteristic p where p is a relatively large prime. 

To share ˆ u , the user can randomly generate a total p vectors V i 

 i = 

⎡ 

⎢ ⎣ 

v i, 1 
v i, 2 
... 

v i,n 

⎤ 

⎥ ⎦ 

(B.3) 

uch that 
p 

 

i =1 

V i = ˆ u (B.4) 

We then blind these values such that 

p 
 

i =1 

R · V i = R · ˆ u (B.5) 

Let’s describe an example where n = 2 and p = 3 . 

We know that sum of the vectors should equal the unit vector.

v 1 , 1 
v 1 , 2 

]
+ 

[
v 2 , 1 
v 2 , 2 

]
+ 

[
v 3 , 1 
v 3 , 2 

]
= ˆ u (B.6) 
We now apply the randomization (blinding) matrix. 
 

 

r 1 r 2 

r 2 1 r 2 2 

r 3 1 r 3 2 

⎤ 

⎦ ·
[

v 1 , 1 
v 1 , 2 

]
+ 

⎡ 

⎣ 

r 1 r 2 

r 2 1 r 2 2 

r 3 1 r 3 2 

⎤ 

⎦ ·
[

v 2 , 1 
v 2 , 2 

]
+ 

⎡ 

⎣ 

r 1 r 2 

r 2 1 r 2 2 

r 3 1 r 3 2 

⎤ 

⎦ ·
[

v 3 , 1 
v 3 , 2 

]
= R · ˆ u 

(B.7) 

 

 

r 1 · v 1 , 1 + r 2 · v 1 , 2 
r 2 1 · v 1 , 1 + r 2 2 · v 1 , 2 
r 3 1 · v 1 , 1 + r 3 2 · v 1 , 2 

⎤ 

⎦ + 

⎡ 

⎣ 

r 1 · v 2 , 1 + r 2 · v 2 , 2 
r 2 1 · v 2 , 1 + r 2 2 · v 2 , 2 
r 3 1 · v 2 , 1 + r 3 2 · v 2 , 2 

⎤ 

⎦ + 

⎡ 

⎣ 

r 1 · v 3 , 1 + r 2 · v 3 , 2 
r 2 1 · v 3 , 1 + r 2 2 · v 3 , 2 
r 3 1 · v 3 , 1 + r 3 2 · v 3 , 2 

⎤ 

⎦ = R · ˆ u 

(B.8) 

 

 

r 1 (v 1 , 1 + v 2 , 1 + v 3 , 1 ) + r 2 (v 1 , 2 + v 2 , 2 + v 3 , 2 ) 
r 2 1 (v 1 , 1 + v 2 , 1 + v 3 , 1 ) + r 2 2 (v 1 , 2 + v 2 , 2 + v 3 , 2 ) 
r 3 1 (v 1 , 1 + v 2 , 1 + v 3 , 1 ) + r 3 2 (v 1 , 2 + v 2 , 2 + v 3 , 2 ) 

⎤ 

⎦ = R · ˆ u (B.9) 

Since the summation of the elements of a unit vector should

um to zero, we can denote the value as follows 
 

a + b 

a 2 + b 2 

a 3 + b 3 

] 

= R · ˆ u (B.10) 

From Eq. (B.6) that the sum of the vectors is the unit vector.

hus, we then know that if the shares are properly formed that

 and b should represent either all zeros or the blinded message.

hus, (a + b) 2 − (a 2 + b 2 ) = 0 and (a + b) 3 − (a 3 + b 3 ) = 0 . 

If a and b are both zero then the terms fall out. 

In the case of only a or b being the blinded message the terms

all out. 

If both a and b are non-zero then the difference will be a non-

ero value. These shares are invalid and should be discarded. 

1. Alternate algorithms 

There are two alternate algorithms for the “square” algorithm

escribed above, which were also presented in [31] . The same pro-

ess is used, but the structure of the blinding matrix is different, as

ell as the final check of R · ˆ u . The first algorithm is the “product”

lgorithm where 

 = 

⎡ 

⎢ ⎣ 

r 1 , 1 r 2 , 1 ... r n, 1 

r 1 , 2 r 2 , 2 ... r n, 2 

... ... ... ... 

r 1 ,p r 2 ,p ... r n,p 

⎤ 

⎥ ⎦ 

(B.11) 

uch that 

 i 

p−1 ∏ 

j=1 

r i, j = r i,p (B.12)

Then, we can apply the blinding matrix to our vectors V i , to

chieve the final result: 

 

a 1 + b 1 
a 2 + b 2 
a 3 + b 3 

] 

= R · ˆ u (B.13) 
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where 

p−1 ∏ 

i =1 

( a i + b i ) = a p + b p (B.14)

An Alternative scheme is the “inverse” algorithm, which has a

blinding matrix of 

R = 

⎡ 

⎢ ⎣ 

r 1 , 1 r 2 , 1 ... r n, 1 

r 1 , 2 r 2 , 2 ... r n, 2 

... ... ... ... 

r 1 ,p r 2 ,p ... r n,p 

⎤ 

⎥ ⎦ 

(B.15)

such that 

∀ i 

p ∏ 

j=1 

r i, j = 1 (B.16)

Then, [ 

a 1 + b 1 
a 2 + b 2 
a 3 + b 3 

] 

= R · ˆ u (B.17)

where 

p ∏ 

i =1 

( a i + b i ) = 1 (B.18)

B2. Share verification analysis 

Here we analyze the protocol to ensure that data owners’ re-

sponses are correctly formed unit vectors where all indexes are

zero except for only one index. 

Correctness The protocol outputs whether the final answer is a

unit vector (i.e., all the indexes are zero except for one location). If

the vector is all zeroes then the sum will be zero. If the answer is

a unit vector then the blinded message terms fall out leaving zero.

If the vector is not a unit vector, the sum will be non-zero and we

can discard this share. 

Privacy All parties only view their own input and the final out-

put. The blinding mechanism effectively masks the data owners

true value. 

Fairness All parties which participate will all view the same fi-

nal answer as the shares sum to the same value. 

References 

[1] L. Sweeney , k-anonymity: a model for protecting privacy, international journal
of uncertainty, Fuzziness Knowl. Based Syst. 10 (5) (2002) 557–570 . 

[2] N. Hunt, Netflix Prize Update, http://blog.netflix.com/2010/03/
this- is- neil- hunt- chief- product- officer.html . URL https://web.

archive.org/web/20100315105936/ http://blog.netflix.com/2010/03/ 
this- is- neil- hunt- chief- product- officer.html . 

[3] G. Wang, B. Wang, T. Wang, A. Nika, H. Zheng, B.Y. Zhao, Defending against

sybil devices in crowdsourced mapping services, in: R.K. Balan, A. Misra,
S. Agarwal, C. Mascolo (Eds.), Proceedings of the 14th Annual International

Conference on Mobile Systems, Applications, and Services, MobiSys 2016, Sin-
gapore,June 26-30, ACM, 2016, pp. 179–191, doi: 10.1145/2906388.2906420 . 

[4] S. Rodriguez, Someone in China Might Know Where You Rode in Ubers
Last Year, 2017, https://www.inc.com/salvador-rodriguez/uber-baidu-security.

html , https://www.inc.com/salvador-rodriguez/uber-baidu-security.html . 

[5] I. Dinur, K. Nissim, Revealing information while preserving privacy, in:
F. Neven, C. Beeri, T. Milo (Eds.), Proceedings of the Twenty-Second ACM

SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June
9-12, 2003, ACM, San Diego, CA , USA , 2003, pp. 202–210, doi: 10.1145/773153.

773173 . 
[6] R. Bhaskar, A. Bhowmick, V. Goyal, S. Laxman, A. Thakurta, Noiseless database

privacy, in: D.H. Lee, X. Wang (Eds.), Proceedings of the Advances in Cryptology
- ASIACRYPT 2011 - 17th International Conference on the Theory and Applica-

tion of Cryptology and Information Security, Seoul, South Korea, December 4-

8, 2011. Proceedings, Vol. 7073 of Lecture Notes in Computer Science, Springer,
2011, pp. 215–232, doi: 10.1007/978- 3- 642- 25385- 012 . 

[7] C. Dwork, A Firm Foundation for Private Data Analysis, 2011, https://cacm.acm.
org/magazines/2011/1/103226- a- firm- foundation- for- private- data- analysis/ 

fulltext . 
[8] C. Dwork, F. McSherry, K. Nissim, A. Smith, Calibrating noise to sensitivity in
private data analysis, TCC, 2006, 

[9] C. Dwork, A. Roth, The algorithmic foundations of differential privacy, Found.
Trends Theor. Comput. Sci. 9 (3-4) (2014) 211–407, doi: 10.1561/040 0 0 0 0 042 . 

[10] C. Dwork, Differential privacy, in: M. Bugliesi, B. Preneel, V. Sassone, I. We-
gener (Eds.), Proceedings of the 33rd International Colloquium on Automata,

Languages and Programming, ICALP 2006, Venice, Italy, July 10-14, Part II,
Vol. 4052 of Lecture Notes in Computer Science, Springer, 2006, pp. 1–12,

doi: 10.10 07/117870 061 . 

[11] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov, M. Naor, Our data, ourselves:
privacy via distributed noise generation, in: Proceedings of the EUROCRYPT,

2006, 
[12] J. Gehrke, E. Lui, R. Pass, Towards privacy for social networks: A zero-

knowledge based definition of privacy, in: Y. Ishai (Ed.), Proceedings of the
8th Theory of Cryptography Conference, TCC 2011, Providence, RI, USA, March

28-30, 2011. Vol. 6597 of Lecture Notes in Computer Science, Springer, 2011,

pp. 432–449, doi: 10.1007/978- 3- 642- 19571- 626 . 
[13] J. Gehrke, M. Hay, E. Lui, R. Pass, Crowd-blending privacy, in: R. Safavi-Naini,

R. Canetti (Eds.), Proceedings of the 32nd Annual Cryptology Conference, Ad-
vances in Cryptology - CRYPTO 2012 -, Santa Barbara, CA , USA , August 19-23,

Vol. 7417 of Lecture Notes in Computer Science, Springer, 2012, pp. 479–496,
doi: 10.1007/978- 3- 642- 32009- 528 . 

[14] E. Sarigöl, D. Garcia, F. Schweitzer, Online privacy as a collective phenomenon,

in: A . Sala, A . Goel, K.P. Gummadi (Eds.), Proceedings of the Second ACM Con-
ference on Online Social Networks, COSN 2014, Dublin, Ireland, October 1-2,

2014, ACM, 2014, pp. 95–106, doi: 10.1145/2660460.2660470 . 
[15] E.A. Horvat, M. Hanselmann, F.A. Hamprecht, K.A. Zweig, One plus one makes

three (for social networks), PLOS One 7 (4) (2012) 1–8, doi: 10.1371/journal.
pone.0034740 . 

[16] M. Moore, Gay Men’ Can be Identified by their Facebook

Friends’, 2009, http://www.telegraph.co.uk/technology/facebook/
6213590/Gay- men- can- be- identified- by- their- Facebook- friends. 

html , http://www.telegraph.co.uk/technology/facebook/6213590/ 
Gay- men- can- be- identified- by- their- Facebook- friends.html . 

[17] M. Kosinski, D. Stillwell, T. Graepel, Private traits and attributes are predictable
from digital records of human behavior, Proc. Natl. Acad. Sci. 110 (15) (2013)

5802–5805. https://doi.org/10.1073/pnas.1218772110 . 

[18] C. Jernigan, B. Mistree, Gaydar: Facebook friendships expose sexual orientation,
First Mon. 14(10). doi: doi:10.5210/fm.v14i10.2611. 

[19] K. Nissim, S. Raskhodnikova, A.D. Smith, Smooth sensitivity and sampling in
private data analysis, in: D.S. Johnson, U. Feige (Eds.), Proceedings of the

39th Annual ACM Symposium on Theory of Computing, San Diego, California,
USA, June 11-13, 2007, ACM, 2007, pp. 75–84. https://doi.org/10.1145/1250790.

1250803 . 

[20] S.P. Kasiviswanathan, H.K. Lee, K. Nissim, S. Raskhodnikova, A.D. Smith, What
can we learn privately? in: Proceedings of the 49th Annual IEEE Sympo-

sium on Foundations of Computer Science, FOCS 2008, October 25-28, 2008,
Philadelphia, PA , USA , IEEE Computer Society, 2008, pp. 531–540, doi: 10.1109/

FOCS.2008.27 . 
[21] N. Li, W.H. Qardaji, D. Su, On sampling, anonymization, and differential privacy

or, k-anonymization meets differential privacy, in: H.Y. Youm, Y. Won (Eds.),
Proceedings of the 7th ACM Symposium on Information, Compuer and Com-

munications Security, ASIACCS ’12, Seoul, Korea, May 2-4, ACM, 2012, pp. 32–

33, doi: 10.1145/2414456.2414474 . 
22] S.L. Warner , Randomized response: a survey technique for eliminating evasive

answer bias, J. Am. Stat. Assoc. 60 (309) (1965) 63–69 . 
23] J.A. Fox , P.E. Tracy , Randomized Response: A Method for Sensitive Surveys, Bev-

erly Hills California Sage Publications, 1986 . 
[24] J.C. Duchi, M.J. Wainwright, M.I. Jordan, Local privacy and mini-

max bounds: sharp rates for probability estimation, in: C.J.C. Burges,

L. Bottou, Z. Ghahramani, K.Q. Weinberger (Eds.), Proceedings of the
27th Annual Conference on Neural Information Processing Systems

and Proceedings of a meeting held on Advances in Neural Informa-
tion Processing Systems 26: 2013. December 5-8, 2013, Lake Tahoe,

Nevada, United States., 2013, pp. 1529–1537 . http://papers.nips.cc/paper/
5013- local- privacy- and- minimax- bounds- sharp- rates- for- probability- estimatio

25] U. Erlingsson, V. Pihur, A. Korolova, RAPPOR: randomized aggregatable privacy-

preserving ordinal response, in: G. Ahn, M. Yung, N. Li (Eds.), Proceedings
of the ACM SIGSAC Conference on Computer and Communications Security,

Scottsdale, AZ, USA, November 3-7, 2014, ACM, 2014, pp. 1054–1067, doi: 10.
1145/2660267.2660348 . 

26] A. Bittau, U. Erlingsson, P. Maniatis, I. Mironov, A. Raghunathan, D. Lie,
M. Rudominer, U. Kode, J. Tinnés, B. Seefeld, Prochlo: strong privacy for ana-

lytics in the crowd, in: Proceedings of the 26th Symposium on Operating Sys-

tems Principles, Shanghai, China, October 28-31, 2017, ACM, 2017, pp. 441–459,
doi: 10.1145/3132747.3132769 . 

[27] A. Blum, K. Ligett, A. Roth, A learning theory approach to noninteractive
database privacy, J. ACM 60 (2) (2013) 12:1–12:25, doi: 10.1145/2450142.

2450148 . 
28] K. Chaudhuri, N. Mishra, When random sampling preserves privacy, in:

C. Dwork (Ed.), Proceedings of the 26th Annual International Cryptology Con-

ference, Advances in Cryptology - CRYPTO 2006, , Santa Barbara, California,
USA, August 20-24, Vol. 4117 of Lecture Notes in Computer Science, Springer,

2006, pp. 198–213, doi: 10.1007/1181817512 . 
29] E. Boyle, N. Gilboa, Y. Ishai, Function secret sharing, in: E. Oswald, M. Fis-

chlin (Eds.), Proceedings of the 34th Annual International Conference on the

http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0001
http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0001
http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html
https://web.archive.org/web/20100315105936/
http://blog.netflix.com/2010/03/this-is-neil-hunt-chief-product-officer.html
https://doi.org/10.1145/2906388.2906420
https://www.inc.com/salvador-rodriguez/uber-baidu-security.html
https://www.inc.com/salvador-rodriguez/uber-baidu-security.html
https://doi.org/10.1145/773153.773173
https://doi.org/10.1007/978-3-642-25385-012
https://cacm.acm.org/magazines/2011/1/103226-a-firm-foundation-for-private-data-analysis/fulltext
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/117870061
https://doi.org/10.1007/978-3-642-19571-626
https://doi.org/10.1007/978-3-642-32009-528
https://doi.org/10.1145/2660460.2660470
https://doi.org/10.1371/journal.pone.0034740
http://www.telegraph.co.uk/technology/facebook/6213590/Gay-men-can-be-identified-by-their-Facebook-friends.html
http://www.telegraph.co.uk/technology/facebook/6213590/Gay-men-can-be-identified-by-their-Facebook-friends.html
https://doi.org/10.1073/pnas.1218772110
https://doi.org/10.1145/1250790.1250803
https://doi.org/10.1109/FOCS.2008.27
https://doi.org/10.1145/2414456.2414474
http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0015
http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0016
http://refhub.elsevier.com/S1570-8705(18)30242-7/sbref0016
http://papers.nips.cc/paper/5013-local-privacy-and-minimax-bounds-sharp-rates-for-probability-estimation
https://doi.org/10.1145/2660267.2660348
https://doi.org/10.1145/3132747.3132769
https://doi.org/10.1145/2450142.2450148
https://doi.org/10.1007/1181817512


J. Joy et al. / Ad Hoc Networks 80 (2018) 16–30 29 

 

 

 

[  

 

 

 

 

 

 

 

[  

[  

 

 

[  

[  

[  
Theory and Applications of Cryptographic Techniques, Advances in Cryptol-
ogy - EUROCRYPT 2015 - Sofia, Bulgaria, April 26-30, Part II, Vol. 9057 of

Lecture Notes in Computer Science, Springer, 2015, pp. 337–367, doi: 10.1007/
978- 3- 662- 46803- 612 . 

30] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, M. Zaharia, Splinter:
Practical private queries on public data, in: A. Akella, J. Howell (Eds.),

Proceedings of the 14th USENIX Symposium on Networked Systems De-
sign and Implementation, NSDI 2017, Boston, MA , USA , March 27-29, 2017,

USENIX Association, 2017, pp. 299–313 . https://www.usenix.org/conference/

nsdi17/technical- sessions/presentation/wang- frank 
[31] E. Boyle, N. Gilboa, Y. Ishai, Function secret sharing:improvements and ex-

tensions, in: E.R. Weippl, S. Katzenbeisser, C. Kruegel, A.C. Myers, S. Halevi
(Eds.), Proceedings of the ACM SIGSAC Conference on Computer and Commu-

nications Security, Vienna, Austria, October 24-28, 2016, ACM, 2016, pp. 1292–
1303, doi: 10.1145/2976749.2978429 . 
32] Wikipedia, List of United States Cities by Area, 2017. https://en.wikipedia.
org/wiki/List _ of _ United _ States _ cities _ by _ area , https://en.wikipedia.org/wiki/ 

List _ of _ United _ States _ cities _ by _ area . 
33] H. Kikuchi, J. Akiyama, G. Nakamura, H. Gobioff, Stochastic voting protocol

to protect voters privacy, in: Proceedings of the IEEE Workshop on Internet
Applications, WIAPP ’99, IEEE Computer Society, Washington, DC, USA, 1999,

pp. 103–105 . http://dl.acm.org/citation.cfm?id=519623.837364 
34] California, Department of Transportation, 2017. http://pems.dot.ca.gov/ , http://

pems.dot.ca.gov/ . 

35] Googles, Waze Announces Government Data Exchange Program with 10 Initial
Partners, 2017. http://www.dot.ca.gov/cwwp/InformationPageForward.do , http: 

//www.dot.ca.gov/cwwp/InformationPageForward.do . 
36] M. Lichman, UCI Machine Learning Repository, 2013. http://archive.ics.uci.edu/

ml . 

https://doi.org/10.1007/978-3-662-46803-612
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/wang-frank
https://doi.org/10.1145/2976749.2978429
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_area
https://en.wikipedia.org/wiki/List_of_United_States_cities_by_area
http://dl.acm.org/citation.cfm?id=519623.837364
http://pems.dot.ca.gov/
http://pems.dot.ca.gov/
http://www.dot.ca.gov/cwwp/InformationPageForward.do
http://www.dot.ca.gov/cwwp/InformationPageForward.do
http://archive.ics.uci.edu/ml


30 J. Joy et al. / Ad Hoc Networks 80 (2018) 16–30 

 Professor Mario Gerla. His research interests include the Internet of Vehicles and scalable 
CLA. CrowdZen privately computes the real-time activity levels across the UCLA campus 

r receiving his masters from UCLA, he now works at Microsoft in the security field. 

llege Dublin’s School of Computer Science and Statistics. His research spans challenged 

holarship and he is widely published in these fields. He focuses on questions such as: 
to how do today’s devices operate. Ciarán holds a Ph.D. in Electronic Engineering, with 

He has been a tenured academic in Trinity College Dublin for almost two decades, and 
 is, and has been, supported by National and International Awards, and he is an an active 

d scholarship. 

. He holds the Jon Postel Chair in Networking. He received his Ph.D. degree from UCLA. 

art of the team that developed the ARPANET models and protocols that formed the basis 
ined the UCLA Faculty in 1976. Dr. Gerla is IEEE Fellow, serves on the IEEE TON Scientific 

ile Outstanding Contribution Award in 2015 and the IEEE INFOCOM Achievement Award 
Joshua Joy is a Ph.D. Candidate in Computer Science at UCLA under the guidance of
privacy within vehicular clouds. He recently led the deployment of CrowdZen at U

and is used daily by thousands of students. 

Dylan is a software engineer specializing in security. Afte

Ciarán Mc Goldrick is an Associate Professor at Trinity Co

communications and networking, energy, security and sc
How will future devices and systems work?, as opposed 

specialisms in Control and Signal and Image Processing. 
has also held visiting appointments in UCLA. His research

advocate for professionalism and excellence in learning an

Dr. Mario Gerla is Professor of Computer Science at UCLA

At UCLA, as a graduate student, in the early 70, he was p
of the modern INTERNET. After a period in industry, he jo

Advisory Board and was recognized with the ACM Sigmob
in 2018. 


	K Privacy: Towards improving privacy strength while preserving utility
	1 Introduction
	2 Related work
	3 Threat model
	4 Warm up construction
	4.1 Goal
	4.2 Discretization
	4.3 Sampling error
	4.4 Private upload

	5 K Privacy&#x00A0;mechanism
	5.1 Binary value
	5.2 Multiple (simultaneous) values
	5.3 Differential privacy guarantee

	6 Private data upload
	6.1 Function secret sharing background
	6.2 Function secret sharing optimization

	7 Pollution protection
	8 Evaluation
	8.1 Accuracy
	8.2 Privacy
	8.3 Scalability

	9 Conclusion
	Appendix A Differential privacy
	A1 Randomized response privacy guarantee
	A1.1 Privacy guarantee of randomized response


	Appendix B Share verification
	B1 Alternate algorithms
	B2 Share verification analysis

	 References


