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Abstract

Generating synthetic data is an attractive method for conducting private analysis of a sensi-
tive dataset. It allows analysts to run their own non-private algorithms on the synthetic dataset
without having to pre-specify the analyses they wish to perform. Further, both the dataset
and any statistical results can be freely disseminated without incurring additional privacy loss.
The goal of synthetic data generation is create data that will perform similarly to the original
dataset for many analysis tasks.

We propose using a Differentially Private Generative Adversarial Network (DP-GAN) to
generate private synthetic data. DP-GANs are a variant of Generative Adversarial Networks
that have been trained privately, and can be used to generate an arbitrary amount of private
synthetic data. We build off of previous work on DP-GANs and add further optimizations to
enhance performance on wide variety of data types and analysis tasks.

Sections 1 and 2 provide background on GANs and DP-GANs, respectively. Sections 3 and
4 contain details of our proposed improvements over previous work. Section 5 contains our
proposed algorithm.

1 Background on GANs

Generative Adversarial Networks (GANs) are a type of generative model in which two neural
networks, commonly known as the Generator (Gy) and Discriminator (Dw), are trained against
each other in a zero-sum game. These neural networks are parameterized by their edge weights—y
and w for Gy and Dw, respectively—which specify the function computed by each network. GANs
were first proposed by [GPAM+14], and there has since been a tremendous amount of research
employing GANs to generate synthetic data.

The Generator takes as input a random vector drawn from a known distribution, and produces
a new datapoint that (hopefully) has a similar distribution to the true data distribution. If we
are given a finite-size database, then the true data distribution can be interpreted as the empirical
distribution that would arise from sampling entries of the database with replacement. The Dis-
criminator then tries to detect whether this new datapoint is from the Generator or from the true
data distribution. If the Discriminator is too successful in distinguishing between the Generator’s
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outputs and the true data, then this feedback is used to improve the Generator’s data generation
process.

We want to train Dw to maximize the probability of assigning right labels, whereas Gy should
minimize the difference between its output distribution and true data distribution. The value of this
two player zero-sum game between Gy and Dw can be written as following min-max optimization
problem:

min
y

max
w

O(y, w) := Ex∼pdata [log(Dw(x))] + Ez∼pz [log(1−Dw(Gy(z)))],

where pdata is true data distribution and pz is a known noise distribution. In the min-max form
of the game, Dwchooses w to maximize O(y, w) and Gychooses y to minimize O(y, w). Their
equilibrium strategies will achieve objective value miny maxw O(y, w). However, since O(y, w) is a
non-convex non-concave objective, these optimal strategies are typically not efficiently computable.
Instead, we use gradient descent/ascent schemes to allow Dw and Gy to iteratively learn their
optimal strategies.

We estimate the function O(y, w) and its gradients by sampling random elements from pz and
pdata. Let {z1, . . . , zm} and {x1, . . . , xm} respectively be random samples from pz from pdata. We
write Oi(y, w) := log(Dw(xi))+ log(1−Dw(Gy(zi))) as i-th sampled function, and take the average
value over the m samples to get estimate of O:

Osample(y, w) =
1

m

m∑
i=1

Oi(y, w).

Next we take the gradient with respect y and w: gy := ∇yOsample(y, w) and gw := ∇wOsample(y, w).
Since the input data were randomly sampled, these are stochastic gradients. Finally, we do the
gradient update step, with gradient ascent for D, w ← w + ηwgw, and gradient descent for G,
y ← y − ηygy, for step sizes ηw and ηy. This update process repeats either until the parameters
converge or until a pre-specified number of update steps have occurred.

An example GAN training algorithm is given below in Algorithm 1. Other GAN training
algorithms may use momentum-based methods instead of the gradient-based update rule given
here. Momentum-based methods often converge faster and are more convenient to use in practice.

Algorithm 1 Minibatch SGD Algorithm For training GANs

for number of training iterations do
for k steps do

sample minibatch of m noise samples {z1, . . . , zm} from pz
sample minibatch of m data samples {x1, . . . , xm} from pdata
update discriminator, Dw, by ascending along stochastic gradient

w ← w + ηwgw

end for
sample minibatch of m noise samples {z1, . . . , zm} from pz
update generator, Gy, by descending along stochastic gradient

y ← y − ηygy

end for
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More broadly, GANs are a type of neural networks, which have been used to fit data using
Stochastic Gradient Descent (SGD) [GPAM+14, ZBH+16]. Neural networks trained with SGD are
already in use for variety of applications, including visual object classification [KSH12], natural
language processing [CW08], and speech recognition [MDH12].

2 Background on DP-GANS

The first DP-GAN algorithm was proposed for private deep learning by [ACG+16], and is presented
below in Algorithm 2. The algorithm privately trains the Discriminator because that neural network
has access to the true data. The Generator only receives feedback about the true data through the
Discriminator’s output, and therefore will also be differentially private by post-processing.

Algorithm 2 Minibatch SGD Algorithm For training DP-GANs

Input parameters: number of data samples n; number of inner iterations k; learning rates
ηy, ηw; minibatch size m; noise scale σ; gradient bound C.
for number of training iterations do
for k steps do

sample minibatch of m noise samples {z1, . . . , zm} from pz
sample minibatch of m data samples {x1, . . . , xm} from pdata
compute stochastic gradient gw.
clip gradient gw and then add noise.

gw ← gw min(1, C/‖gw‖) +N (0, σCI)

update discriminator, Dw, by ascending along stochastic gradient

w ← w + ηwgw

end for
sample minibatch of m noise samples {z1, . . . , zm} from pz
update generator, Gy, by descending along stochastic gradient

y ← y − ηygy

end for
Instead of using standard gradient based update rule, one can use momentum based methods
which are faster and convenient to use in practice.

In this algorithm, the Discriminator’s stochastic gradient descent step is privatized by adding a
gradient clipping and noise addition step. The algorithm clip gradient gw to ensure that its norm is
upper bounded by some constant C. We call this clipped gradient gclip,w. This clipping ensures an
upper bound of C on magnitude of the gradient and hence the sensitivity of the update is at most
C. To ensure differential privacy, the Gaussian Mechanism with variance σ is applied to gclip,w to
get a noisy clipped gradient gnoise,clip,w. Finally, the parameter w is updated via gradient ascent
using the noisy clipped gradient: w ← w + ηwgnoise,clip,w.

Theorem 2.1 ([ACG+16]). There exist constants c1 and c2 so that given the sampling probability
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q = m/n and the number of iterations T , for any ε < c1q
2T , Algorithm 2 is (ε, δ)-differentially

private for any δ > 0 and for

σ ≥ c2
q
√
T log(1/δ)

ε
.

The proof of this theorem makes use of a moments accountant to give even tighter privacy

bounds than can be achieved through advanced composition. Suppose we choose σ =
√

2 log 1.25
δ /ε

then each update is an (ε, δ)-differentially private instantiation of the Gaussian Mechanisms. After
T updates, advanced composition would give (O(ε

√
Tk log(1/δ′)), Tkδ + δ′)-differential privacy.

Using the moments accountant method, the overall algorithm is (O(qε
√
Tk), δ)-differentially private

for q = m/n < 1. Relative to advanced composition, this saves a factor of
√

log(1/δ′) in the ε-
parameter and factor of Tk in the δ. The factor of q = m/n < 1 arises from the additional
privacy protection from sampling only m� n data points in each update step for Dw. By privacy
amplification, this makes each update step (qε, qδ)-differentially private.

In practice, this algorithm performs well. For example with m = 0.01n, σ = 4, δ = 10−5 and
T = 10000, we have ε ≈ 1.26.

3 General optimization techniques to improve accuracy

In this section, we summarize a number of techniques that can be used to improve the privacy-
accuracy frontier for DP-GANs. These techniques are all combined with the DP-GAN framework
in Algorithm 3.

3.1 Smart clipping

We first recall clipping gradient procedure described in answers to the questions and earlier section.
We clip the gradient gw during the training of DP-GAN to ensure that its norm is upper bounded
by some constant C. We call this clipped gradient gclip,w. Then, to ensure differential privacy, we
add N(0, kC) noise (for input parameter k) to gclip,w, and refer to this noisy clipped gradient as
gnoise,clip,w.

Different parameters in a neural network may have gradients of different scale, and hence
ought to be clipped and injected with noise differently. This is particularly relevant for gradient
coordinates that are small in magnitude, as adding relatively large amounts of noise to these
coordinates may significantly harm accuracy. Further, small gradients imply low sensitivity, so we
should not need to inject as much noise to these coordinates to preserve same level of privacy

To address this, we use two smart clipping techniques introduced in [ZJW18]. The first technique
is parameter grouping: we dynamically group different coordinates of gradients according to their
relative magnitude, and add noise that only scales with the maximum magnitude in the group. Note
that this is a grouping of parameters and not private data entries. Since each group is clipped and
corresponding gradient is made appropriately noisy, the update will remain private with respect to
private data. The grouping of parameters is determined dynamically in each inner loop of training
by continuously maintaining the magnitude of each gradients, then performing clustering on those
parameters. The initial grouping can be determined from the gradients of first iteration, but the
grouping obtained from pre-training the network with small public data demonstrates a more stable
result. The pre-training idea, which we call warm starting, is discussed in Section 3.2.
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The second smart clipping technique is adaptive clipping, which adaptively choose the amount
of clipping over time. For each group of parameters in a given iteration, the amount of clipping
is set to be the average of gradients of those parameters in the previous step. This was shown in
[ZJW18] to further improve the accuracy and convergence rate of DP-GANs.

3.2 Warm starting

Motivated by the observation that GANs tend to be unstable in early rounds of training, previous
work [ZJW18] has proposed to warm-start the DP-GAN by treating a small portion of the data
(≈ 2%) as public and using them to train the GAN non-privately. Then the final parameters of
the non-private GAN can be used as starting parameters in the first iteration of DP-GAN training.
This will ensure that the DP-GAN starts from a position that is already approximately correct, and
thus will require fewer rounds of training. [ZJW18] showed that this techniques improves accuracy
by about 15% for standard statistical measures in machine learning.

However, in many real-world applications, releasing even a small subset of sensitive data may
raise legal or ethical concerns. Instead, we propose using relevant publicly available datasets for
warm starting. For example, we can use publicly available 1940 Census data to warm start the
training on 2010 Census data, or a published clinical trial dataset for training on a medical-related
dataset. As long as this public data is statistically similar to the sensitive data, it will provide the
same accuracy improvements as subsampling. An analyst could similarly use domain knowledge or
personal experience as a warm-start for DP-GAN.

3.3 Improved privacy via privacy accountant

The amount of noise added in each iteration is itself a random variable that depends on amount of
gradient clipping and the grouping of parameters, which vary in each iteration based on previous
random gradients (see Section 3.1). Therefore, directly applying the advanced composition theorem
on the general bound of noise added to gradients will result in a loose privacy bound. Intuitively,
we should apply advanced composition theorem to the actual noise added to gradients.

To achieve this, we keep track of our accumulated privacy loss using the privacy accountant
of [ACG+16], which is designed for computations where the randomization and privacy loss of
mechanism’s current iteration depends on the outcome of past iterations. Intuitively, this allows
the analysis of composing probability ratios directly on the sequence of possible outcomes over
iterations, rather than composing the sequence of privacy losses over iterations. For a formal
definition of the privacy accountant and the relationship between its composition guarantees and
regular (ε, δ)-differential privacy, we refer the interested reader to [ACG+16].

In practice, the accumulated privacy loss over training is the key to deciding when a pre-specified
privacy budget has been reached and training should halt.

3.4 GAN architecture for new data types

GANs have been recognized in machine learning for their ability to generate synthetic image data.
In this section, we cite relevant existing work on the development of GANs for other types of data,
and suggest our own ideas to utilize them in our DP-GAN. All modifications presented in this section
are on the underlying neural network structure, so they can be implemented straightforwardly in
our DP-GANs framework.
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Continuous data. Real-valued data is easily handled by neural networks and thus DP-GANs as
well. This will make regression tasks among the easiest for our DP-GAN to handle without much
further optimization. See, for example, the success of using DP-GANs to generate clinical data,
whose features are blood pressures of subjects over multiple visits [BJWWG17].

Binary data. It has been generally observed that neural networks can handle binary data (both
as input and output, as in our case of synthesizing data task). Examples of techniques to incorporate
binary data include adding a perceptron activation function in the output layer to generate binary
data or Gumbel-softmax function as an approximation to multinomial distribution. It is folklore
that neural networks are particularly well-suited for classification tasks, relative to regression tasks.
This is because classification can be thought of as a special and easier case of regression, where
the output is restricted to specific set of numbers, e.g., {0, 1} for binary-classification. For such a
task, the output layer node generally has a perceptron activation which gives much clearer error
signal for the back-propagation algorithm that calculates gradients. See [CBM+17] for a successful
example of generating binary data in medical records.

Discrete-valued data. Motivated by the success of GANs in handling binary data, we propose
encoding discrete data with small values (e.g., values below 15) as short binary strings, and treat
discrete data with larger values as real-valued entries. We will round the synthetically generated
data points to their nearest allowable integer value if they fall outside of the valid range.

Categorical data. Categorical data can be handled with a newly-developed GAN architecture
[JGP16, KHL16] using the Gumbel-softmax function, which is a continuous approximation of multi-
nomial distribution parameterized by a softmax function. We plan to incorporate this into our
DP-GAN to handle categorical data.

Geo-spatial data. Geospatial data can be pre-processed by encoding geographical location as a
two-dimensional real-valued attribute containing latitude and longitude. If the geospatial attribute
describes a region (e.g., city or neighborhood), we can either randomly sample a point within that
region or chose the center of the region. Once the attribute has been made numerical, we can use
auxiliary information to post-process and improve accuracy. For example, if a randomly generated
address appears in a body of water, that should be projected to a nearby location on land.

Graphs. GANs have recently been used to generate synthetic graphs by embedding the graph
compactly into vectors specifically designed for GANs [WWW+17]. Our DP-GAN can also use
this embedding techniques to privately generate synthetic graphs that share the same statistical
properties as the original graph. This will allow private analysis of research questions such as link
prediction, community detection, and influence maximization.

4 Task-specific optimization techniques

It is observed that, without further optimization, the loss function used for training DP-GANs
converges (decreases) significantly at the start, but no longer consistently decreases in further
training due to injected noise [BJWWG17]. Instead, the loss varies within the range even after many
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epochs (outer iterations) of training. The problem is, then, how to choose the right parameters
of DP-GAN from many epochs, when most of them perform within a range of accuracy? One
method is to evaluate those parameters over many epochs with respect to a machine learning task
of interest, then pick ones with top performance. We can still maintain privacy of the overall
algorithm by using Report Noisy Argmax to pick the parameters.

We will first reserve some true data to privately train the appropriate model (e.g., random
forest model for clustering) up to some satisfactory accuracy on the true data. We will then check
the accuracy of this model on synthetic data generated from the generator at each outer iteration.
Formally, let A denote the analysis task at hand, which takes in a dataset and outputs a classified.
Let B be an accuracy evaluation task that takes in a classifier and labeled data (test data or holdout
set) and output the accuracy of the classifier on the data. After training the DP-GAN for T epochs,
we have a collection of T sets of DP-GAN generator parameters Gt for t = 1, 2, . . . , T . For each
t = 1, 2, . . . , T , run algorithm A on synthetic dataset Ut generated by Gt to obtain a trained model
θt. Then test the accuracy of θt on a holdout set of the the true data using algorithm B to obtain
accuracy level αt. Finally, we choose a small set Q ⊂ [T ] of the epochs by running Report Noisy
Argmax on the set {α1, . . . , αT } without replacement. The final synthetic data S is generated by
a combination of models: for each t ∈ Q, use Gt to generate a dataset St of |S|/|Q| data points for
desired size |S| of the synthetic dataset. The final dataset is their union S :=

⋃
t∈Q St.

The algorithmic framework above applies to any analysis tasks including clustering and re-
gression. For unlabelled data, such as for a clustering task, we can run the algorithm B on the
holdout set and Gt, and measure the difference in performance with respect to some appropriate
problem-specific metric. For example, in clustering, αt can be defined as the negative of the addi-
tional objective value from using Gt instead of holdout set. We can then choose Q by Report Noisy
Argmax as described above.

Alternatively, we can use statistical scores (e.g., Jensen-Shannon scores, as described in the
answers to questions) which does not require any task to be specified. This approach works for
labeled and unlabeled data, and allows for accuracy improvements for unknown research questions
as well. Then, we can proceed to choose Q as before, using Report Noisy Argmax on the statistical
scores instead of αt.

5 Our DP-GAN algorithm

In this section, we combine all the improvements proposed in Sections 3 and 4 into our proposed
solution, given in Algorithm 3.
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Algorithm 3 Minibatch SGD Algorithm For training DP-GANs

Input parameters: number of data samples in private training data n; public dataset Dpublic;
number of inner iterations k; learning rates ηy, ηw; minibatch size m; minibatch size for public
data mpublic; noise scale σ; number of parameter groups l; privacy budget (ε0, δ0).
while y has not converged do
for k steps do

sample minibatch of mpublic noise samples {zi}
mpublic

i=1 from pz
sample minibatch of mpublic data samples {xi}

mpublic

i=1 from Dpublic

compute corresponding gradient for each datapoint {g(i)w }
mpublic

i=1 where

g(i)w := ∇wOi(y, w)

group parameter w into l groups: {Gj}lj=1, using weight clustering

{(Gj , cj)}lj=1 ←Weight-Clustering(l, {g(i)w }
mpublic

i=1 ) (1)

sample minibatch of m data samples {x1, . . . , xm} from pdata
sample minibatch of m noise samples {z1, . . . , zm} from pz
compute stochastic gradient gw
clip gradient gw according to grouping (Gj , cj) obtained from weight clustering

gw,(j) ← (gw ∩Gj), for j = 1, . . . , l

gw,(j) ← gw,(j) min(1, cj/‖gw,(j)‖), for j = 1, . . . , l

add corresponding noise in the clipped gradient groups

gw,(j) ← gw,(j) +N (0, σcjI), for j = 1, . . . , l

update discriminator, Dw, by ascending along stochastic gradient

wj ← wj + ηwgw,(j), for j = 1, . . . , l

w ← {wj}lj=1

end for
sample minibatch of m noise samples {z1, . . . , zm} from pz
compute stochastic gradient gy
update generator, Gy, by descending along stochastic gradient

y ← y − ηygy

query moments accountant with σ, ε0, q(= m/n), k, T where T is current number of outer
iteration

δ ← exp
{
− σ2ε20
c22q

2Tk

}
if δ > δ0 then

break
end if

end while
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The weight clustering subroutine is used in line (1) of Algorithm 3. This subroutine is given
below in Algorithm 4.

Algorithm 4 Weight-Clustering

Input parameters: number of groups l; stochastic gradients {g(i)w }
mpublic

i=1

compute average gradient

g =
1

mpublic

mpublic∑
i=1

g(i)w (2)

initialize groups as G ← {gj , cj} where gj are elements of vector g and cj ← |gj | is the average
gradient
while |G| > k do

compute G,G′ groups which have closest possible c’s

G,G′ ← arg min
G,G′∈G

max
( c(G)

c(G′)
,
c(G′)

c(G)

)
merge G,G′ to get updated set G

G′′ ← G ∪G′

G ← G \ {G,G′} ∪G′′

c(G′′)←
√
c(G)2 + c(G′)2

end while
return G
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