
DPSyn: Differentially Private Synthetic Data Publication

August 2, 2018

Ninghui Li, Zhikun Zhang, Tianhao Wang
Team DPSyn, Purdue University

{ninghui,zhan3072,tianhaowang}@purdue.edu

1 Introduction

In recent years, publishing high-dimensional datasets while preserving privacy becomes a prominent desire.
However, due to the curse of dimensionality, this task is challenging. In this paper, we propose to develop
DPSyn, an algorithm and open-source software for synthesize microdata while satisfying differential privacy.
DPSyn builds on our previous work PriView (published at SIGMOD’14 under the title “PriView: practical
differentially private release of marginal contingency tables”). The main idea is to generate a synthetic
dataset that approximates many randomly-chosen marginal distributions of the input dataset.

1.1 Method Overview

Our technique deals with categorical datasets; and numerical attributes are first bucketized so that they
become categorical values. Each marginal is specified by a subset of the attributes, and can be viewed as
a projection from the full contingency table to those attributes. A marginal table consists of L cells; each
cells contains a fraction number such that the sum of all numbers is 1. For example, a marginal table with
8 binary attributes has L = 28 = 256 cells, and fully captures the distribution on these 8 attributes. A
dataset with 100 binary attributes has a huge number of (100 chooses 8, to be exact) 8-way marginals. Our
approach is to randomly select m marginals of size L (e.g., m = 50, L = 256), compute these marginals
on the input dataset in a way that satisfies differential privacy, and then synthesize a dataset based on
these marginals. The rationale for our approach are as follows. Any analysis one may want to conduct on
a dataset can be performed using the joint distribution of some subset of attributes. On most subsets of
attributes, a synthesized dataset that simultaneously preserves many (from dozens to hundreds) randomly-
chosen marginals would have a distribution close to that of the original dataset. Under differential privacy,
one can answer counting queries with good accuracy; thus we utilize marginals (which are essentially counting
queries) to extract information from the input dataset.

Given a dataset as input, the first step is to generate many randomly selected noisy marginals on the
dataset. The algorithm decides the parameters m (number of marginals) and L (size of marginals). Analysis
in the PriView paper showed that L = 256 is approximately optimal for binary attributes, we will study
whether the same holds for general categorical attributes. The number m depends on the dataset size and
the privacy parameter ε. The algorithm then computes these marginals of the input dataset, and finally adds
Laplacian/Gaussian noises to them so that differential privacy is satisfied. The amount of noises depends on
the privacy parameter ε, and the number of marginals, as publishing each marginal has a global sensitivity
of 1.

In the second step, we use techniques developed in PriView to make all noisy marginals consistent with
each other. The techniques presented in PriView were for binary attributes. We have already extended
those techniques to categorical attributes. In PriView, it was shown that one can use these noisy marginals
(called private views there) to reconstruct arbitrary marginals with high accuracy. This suggests that these
noisy marginals captures a lot of information in the input dataset, and can be used for a broad range of data
analysis tasks.

The third step is to generate a synthetic dataset given these private views. PriView only has techniques
to reconstruct other query marginal. Here we propose to develop techniques to synthesize a dataset that
approximates these views. This is where we expect to spend most of our efforts. We plan to investigate a
few alternative methods. One method starts with a randomly generated dataset and gradually changes it to
be consistent with the noisy marginals. Another is to use these noisy marginals to construct probabilistic
graphical models of the dataset, and then synthesize data from these probabilistic models. The key challenge
is efficiency. To be able to preserve information in datasets with dozens or more attributes, we expect to use
dozens or more noisy marginals, each including 5− 10 attributes. We expect the implemented software tool
can generate datasets with millions of records in this setting.

Clearly, the larger m (the more marginals), the more marginal information is preserved, and the better
the utility. However, a larger m also means more noise for each marginal, when the total privacy budget is
fixed. Fortunately, a larger dataset means that less privacy budget is needed for each individual marginal.
With a dataset 10 times larger, one needs only 1/10 privacy budget to get marginal of the same accuracy.
Furthermore, if we are willing to go beyond strict epsilon differential privacy, and accepts weaker notions such
as (ε, δ) differential privacy, we can use more advanced composition theorems to our advantage. Essentially,
if one spends 1/10 of original budget for one marginal, then one is able to publish a lot more than 10 times
the original number of marginals. This means that our approach is very promising for large datasets.

1.2 Contribution

First, we improve PriView to handle the high-dimensional case and we extend PriView to handle the non-
binary case. Second, contrary to existing methods, which can only handle specific tasks, our algorithm
is generic, meaning that any task can be performed on the output of the algorithm. Third, we plan to
open-source the code.

2 Preliminaries

2.1 Problem Definition

We assume that there are d attributes A = {a1, a2, . . . , ad}. Each attribute ai has ci possible values. Wlog,
we assume that the values for ai are [ci] := {0, 1, · · · , ci − 1}. Each user has one value for each attribute.
Thus user j’s value is a d-dimensional vector, denoted by vj = 〈vj1, v

j
2, . . . , v

j
d〉 such that vji ∈ [ci] for each i.

The full domain for the users’ values is given by D = [c1] × [c2] × · · · × [cd], in which × denotes cartesian

product. The domain D has size |D| =
∏d
i=1 ci.

Let us first consider the setting of answering marginal queries in the centralized setting, where the server
has all users’ data. For a population of n users, the full contingency table gives, for each value v ∈ D, the
fraction of users having the value v. The full contingency table gives the joint distribution of all attributes in
A, and includes the complete information. We use F to denote the full contingency table, and call the fraction
for each value v ∈ D a cell in the full contingency table. When the domain size is very large, e.g., when
there are many attributes, computing the full contingency table can be prohibitively expensive. Oftentimes,
one is interested in the joint distribution of some subsets of the attributes. Given a set of attributes A ⊆ A,
we use VA = {〈v1, v2, . . . , vd〉 : vi ∈ [ci] if ai ∈ A, otherwise vi = ∗} to denote the set of all possible values
specified by A.

When given a set A of k attributes, the k-way marginal over A, denoted by MA, gives the fraction of
users having each value in VA. We call the fraction for each value v ∈ VA a cell of the marginal table. MA

contains fewer cells than the full contingency table F. Each cell in MA corresponds to many cells in F, which
have the same indicating values on the attributes in A. MA can be computed from F by summing up all
corresponding cells in F. See Figure 1 for an example of the process. Note that when d is large, it is infeasible
to compute F directly, and one needs to compute the marginals instead.

Given the marginals, we can generate the synthetic dataset that follows the marginal distribution. How-
ever, due to privacy concerns, it is not possible to compute the marginal tables directly. We propose to use
Differential Privacy to quantify the information leakage.

2

Gender Age

v1 male teenager
v2 female teenager
v3 female adult
v4 female adult
· · · · · · · · ·
vn male elderly

(a) Dataset.

v F(v)

〈male, teenager〉 0.20
〈male, adult〉 0.15
〈male, elderly〉 0.20
〈female, teenager〉 0.15
〈female, adult〉 0.20
〈female, elderly〉 0.10

(b) Full contingency table.

v M{gender}(v)

〈male,∗〉 0.55
〈female,∗〉 0.45

(c) Marginal table for gender.

v M{age}(v)

〈∗,teenager〉 0.35
〈∗,adult 〉 0.35
〈∗,elderly〉 0.30

(d) Marginal table for age.

Figure 1: Example of the dataset, the full contingency table, and the marginal tables.

2.2 Differential Privacy

Differential privacy [3] was proposed for the setting where there is a trusted data curator, who gathers
data from individual users, processes the data in a way that satisfies DP, and then publishes the results.
Intuitively, the DP notion requires that any single element in a dataset has only a limited impact on the
output.

Definition 1 ((ε, δ)-Differential Privacy). An algorithm A satisfies (ε, δ)-differential privacy ((ε, δ)-DP),
where ε > 0, δ ≥ 0, if and only if for any datasets D and D′ that differ on one element, we have

∀T ⊆Range(A) : Pr [A(D) ∈ T] ≤ eε Pr [A(D′) ∈ T] + δ, (1)

where Range(A) denotes the set of all possible outputs of the algorithm A.

Note that (ε, 0)-DP is also called pure DP, which is a more strict definition. When t DP algorithms are
applied, each satisfying ε-DP, in the pure DP setting, the total privacy budget would be t · ε; while in the
non-pure setting, one can use advance composition stated below to compute the final privacy budget.

Theorem 1 (Advanced Composition in Adaptive Setting [4]). If A1,A2, . . . ,At are ε-DP and A(D) =
Ak(D,At−1(D,At−2(D, . . .))), then A(D) is (ε′, δ)-DP for all δ and ε′ =

√
2t ln(1/δ)ε+ t(eε − 1)ε.

Note that advanced composition is only a general bound, which is not very tight. To capture the privacy
loss precisely, one can use a numerical method to calculate a tighter bound.

Numerically bounding privacy loss. In [10], the authors propose a numerical method to calculate the
privacy loss on any r-fold differential privacy mechanism. The intuition is that, for the Gaussian/Laplace
mechanism, since it follows a distribution, one can bound the privacy loss. For the composed mechanisms,
the method compute privacy loss by enumerating the events and summarize the probabilities. As a result,
the computed privacy loss is much smaller than that computed by advance composition theorem. Note that
when pure DP is used, the computed privacy loss is the same as the sum of the privacy budget used in each
step.

3 DPSyn

In this section, we describe our proposed method DPSyn for synthesizing dataset with differential privacy
guarantee. Our method builds on the PriView method for publishing marginal tables [12], so we describe
PriView first.

3

3.1 An Overview of PriView

The PriView method was designed for privately computing arbitrary k-way marginals for a dataset with d
binary attributes. PriView publishes a synopsis of the dataset. Using the synopsis, it can reconstruct any
k-way marginal. The synopsis takes the form of m size-` marginals (the marginals contain ` attribute) that
are called views. Note that the objective of PriView is to use the noisy views to answer arbitrary k-way
marginals, but DPSyn aims to use the noisy views to synthesize a dataset that consistent with these views.
Below we give an overview of the PriView method, using an example where there are d = 8 attributes
{a1, a2, · · · , a8}, and we aim to answer all 3-way marginals. PriView has the following four steps.

3.1.1 Choose the Set of Views

The first step is to choose which marginals to include in the private synopsis as views. That is, one needs to
choose m sets of attributes. PriView chooses these sets so that each size-2 (or size-3) marginal is covered by
some view. For example, if aiming to cover all 2-way marginals, then one could choose the following m = 6
sets of attributes to construct views:

{a1, a2, a3, a4} {a1, a5, a6, a7} {a2, a3, a5, a8}
{a4, a6, a7, a8} {a2, a3, a6, a7} {a1, a4, a5, a8}

Observe that any pair of two attributes are included in at least one set.

3.1.2 Generate Noisy Views

In this step, for each of the m attribute sets PriView constructs a noisy marginal over the attributes in the
set, by adding Laplace noise Lap

(
m
ε

)
to each cell in the marginal table. This is the only step that needs

direct access to the dataset. After this step, the dataset is no longer accessed.

3.1.3 Consistency Step

Given these noisy marginals/views, some 3-way marginals can be directly computed. For example, to obtain
the 3-way marginal for {a1, a2, a3}, we can start from the view for {a1, a2, a3, a4} and marginalizes out a4.
However, many 3-way marginal are not covered by any of the 6 views. For example, if we want to compute the
marginal for {a1, a3, a5}, we have to rely on partial information provided by the 6 views. We can compute
the marginals for {a1, a3}, {a1, a5}, and {a3, a5}, and then combine them to construct an estimation for
{a1, a3, a5}.

Observe that {a1, a5} can be computed both by using the view for {a1, a5, a6, a7} and by using the
view for {a1, a4, a5, a8}. Since independent noises are added to the two marginals, the two different ways
to compute marginal for {a1, a5} will have different results. In addition, the noisy marginals may contain
negative values. PriView performs constrained inference on the noisy marginals to ensure that the marginals
in the synopsis are all non-negative and mutually consistent.

3.1.4 Overall Consistency

We can conduct the following procedure to achieve overall consistency. First, enumerate all the subsets of A.
These subsets form a partial order under the subset relation, which can be organized as a topological graph.
This topological graph starts from the empty set. Then, for each subset of A in the topological order, we
ensure the consistency among the marginals that include this subset. It is shown in [12] that following the
topological order, a later consistency step will not invalidate consistency established in previous steps.

Non-Negativity through Ripple. We propose to adopt the following “Ripple” non-negativity method,
which turns negative counts into 0 while decreasing the counts for its neighbors to maintain the overall
count constant. Specifically, given an k-way marginal table TA, for any v ∈ VA with TA(v) < −θ, we set the
entry to 0 and subtract |c|/h from each of its h neighboring cells, defined as the cells obtained by changing
one of the attributes’ category to other categories, and h is determined by the number of categories of each
attribute in A. However, this procedure may make the count of other cells to be c < −θ, the procedure
iterates until no cell has count c < −θ. As each iteration distributes a negative count into h neighbors, it

4

is guaranteed to terminate quickly. Applying the ripple non-negativity step to the marginals, however, may
make them inconsistent. To resolve this problem, we run the consistency step after the non-negativity step
several times.

3.2 Improvement over PriView

Utility optimization. PriView was proposed to handle datasets with limited columns, e.g., d = 8 to 16.
When d grows larger, i.e., in the typical census dataset, d can be as large as 100, the number of marginals
output by PriView grows accordingly, and the privacy budget allocated for each marginal is much less.
Therefore, we propose to use approximate differential privacy and use the numerical approach to calculate
the final privacy loss. Moreover, we propose to use Gaussian mechanism because it is shown to achieve better
privacy-utility tradeoff in [10].

Extend to non-binary case. In the consistent step, PriView can only handle binary attributes. We should
design technique to consist non-binary attributes. Notice that when different marginals have some attributes
in common, those attributes are actually estimated multiple times. Utility will increase if these estimates are
utilized together. Specifically, assume a set of attributes A is shared by s marginals, A1, A2, . . . , As. That
is, A = A1 ∩ . . . ∩ As. Now we can obtain s copies of TA by summing from cells in each of the TA’s, i.e.,
TAi(v) =

∑
v′∈VAi

,v′A=vA
TAi

(v′).

To obtain a better estimation of TA, we use the weighted average of TAi
for all marginal Ai. That is,

TA(v) =
∑
i

wi · TAi(v).

Since each TAi
is unbiased, their average TA(v) is also unbiased. To determine the distribution of the

weights, the intuition is to put more weights to the more accurate estimations. Specifically, we minimize
the variance of TA(v), i.e., Var [TA(v)] =

∑
i w

2
i · Var [TAi(v)] =

∑
i w

2
i · Ci · Var0, where Ci is the number

of cells from Ai that contribute to A, i.e., Ci = |{v′ : v′ ∈ VAi
, v′A = vA}|, and Var0 is the basic variance

for estimating a single cell (we assume each marginal has a similar amount of users, but the analysis can be
easily changed to different number of users). Formally, we have the following problem:

minimize
∑
i w

2
i · Ci

subject to
∑
i wi = 1

According to KKT condition [7, 6], we can derive the solution: Define L =
∑
i w

2
i · Ci + µ · (

∑
i wi − 1),

by taking the partial derivative of L for each of wi, we have wi = − µ
2Ci

. The value of µ can be solved by the

equation
∑
i wi = 1. As a result, µ = − 2∑

i
1
Ci

, and wi =
1
Ci∑
i

1
Ci

. Therefore, the optimal weighted average is

TA(v) =

∑
i

1
Ci
· TAi

(v)∑
i

1
Ci

Once the accurate TA is obtained, all TAi
’s can be updated. For any marginal Ai, we update all v′ ∈ VAi

using the result of v where v ∈ V A and v′A = vA. Specifically,

TAi
(v′)← TAi

(v′) +
1

Ci

(
TA(v)− TAi

(v)

)

3.3 Generate Synthetic Dataset

Given the consistent noisy marginals, the goal is to generate a synthetic dataset S that has a similar
distribution with the original dataset D. Specifically, for any set of attribute A, we want TA ∼ MA, where
MA is the marginal of S, and TA is the noisy marginal of D. Note that this step is a post-processing step,
which takes the noisy marginals only.

We propose two approaches for doing this, i.e., MCF and STS. MCF first initializes S by randomly
generate n records; then all noisy marginals are traversed to make sure S follows the same marginals with

5

the noisy marginals obtained from D. STS works more like a generative model, which samples records that
follow the desired distribution, and thus no update is needed.

MCF: update through Min-Cost Flow. Given the dataset S, for each noisy marginal TA, we update
S so that TA ∼ MA. Note that during the process of update, it is possible that the consistency of previous
step is invalidated by following step. We propose to model the update procedure as the minimum cost flow
problem. The result of the min-cost flow problem will give the update operations that make the minimal
changes to S. The intuition is that, by changing the dataset in the minimal way, the inconsistency effect is
minimized.

To determine the minimal changes on A, a flow graph is constructed as Figure 2. In Figure 2, nodes s
and t represent the source node and the sink node. Flows departing from s represent values in MA, and
flows arriving at t represent values in TA. The edge capacity between MA and TA is 1. The edge cost is 0
for the horizontal edges, and is 1 for all other edges. The objective is to determine all the flows from MA to
TA to minimize the total cost. Denote c(u, v) and f(u, v) as the cost and flow on edge (u, v), we formalize
the minimum cost flow problem as the following linear programming problem:

minimize
∑

ma∈MA,ta∈TA

c(ma, ta) · f(ma, ta)

subject to ∀
ma∈MA

f(s,ma) =
∑
ta∈TA

f(ma, ta),

∀
ta∈TA

f(ta, t) =
∑
ma∈MA

f(ma, ta),

∀
ma∈MA

∀
ta∈TA

0 ≤ f(ma, ta) ≤ 1,

s t

TAMA

(a)

Figure 2: Illustration of minimum cost flow problem.

The above optimization problem can be solved by off-the-shelf solvers. Note that one still needs to repeat
the process for all the noisy marginals multiple times until the amount of changes is small. This indicates S
converges to be consistent with all the noisy marginals.

STS: Sample records from Topologically Sorted marginals. STS first topologically sorts the
marginals, so that the first marginal is randomly chosen, and then each following marginal contains as
few as new attributes as possible. For example, if the first marginal is A1 = {a1, a2, a3, a4}, we choose
A2 = {a1, a2, a3, a5} over A3 = {a1, a2, a5, a6} because A2 contains only one new attribute a5 but A3

contains two a5, a6. If there is a tie, a random marginal is chosen. If there is a marginal that contains no
new attribute, it is discarded. We iteratively choose a set of marginal so that all attributes A are covered.
Notice that the topologically sorted marginals does not necessarily contain all marginals in A.

Given the sorted marginals, records are generated one by one. Specifically, for the first marginal A,
take the attributes combination with largest count v = arg maxv TA(v), assign v to the attributes A of the
data record. With the data record partially set, the new attributes in the following marginal is set to the
combination with largest count. That is, for the new marginal A′, find and assign v′ = arg maxv′ TA′(v′),
where v′ must agree with the existing instantiated value.

6

When the data record is fully generated, the counts of corresponding combinations in all marginals are
reduced by 1. Following the same procedure, we can generate n records until the counts for all marginal are
equal to 0. Finally, to eliminate the impact of the first randomly selected marginal, we repeat the process
several times.

The following example illustrates the generation procedure. Given four binary attributes {a1, a2, a3, a4}
and three topologically sorted marginals A1 = {a1, a2}, A2 = {a2, a3}, A3 = {a3, a4}. The original marginal
tables are shown in Figure 3a. Observe that the first marginal A1 contains two attributes {a1, a2}, and the
combination with largest count is {1, 0}. The second marginal A2 provides new attribute a3. Given a2 = 0,
A2 = {0, 1} has the largest count (over {0, 0}). Similarly, given a3 = 1, A3 = {1, 1} have the largest count.
With above calculation, one can generate the first record {1, 0, 1, 1}, and reduce the corresponding counts
by 1, see Figure 3b. Then, we can generate the other records following the same procedure. If the count of
several combinations are the same, we randomly choose one of them.

{0, 0} {0, 1} {1, 0} {1, 1}
A1 = {a1, a2} 3 2 4 1
A2 = {a2, a3} 2 3 3 2
A3 = {a3, a4} 4 3 1 2

(a) Original marginal table.

{0, 0} {0, 1} {1, 0} {1, 1}
A1 = {a1, a2} 3 2 3 1
A2 = {a2, a3} 2 2 3 2
A3 = {a3, a4} 4 3 1 1

(b) Marginal table when the first record is generated.

Figure 3: Marginal tables.

4 Discussion

4.1 Utility

We optimize utility by taking advantage of the most advanced composition theorem. That is, given the
privacy budget ε and δ, and the dataset column count d, we optimize the number of marginals ` and the
size of each marginal w, so that the overall expected error is minimized. Specifically, for any combination of
` and w, we first calculate the privacy budget ε′, δ′ allocated for each marginal, using the numerical method
proposed in [10]. We then calculate the expected utility, elaborated below. Finally, the ` and w with the
minimal privacy loss is chosen as the configuration of DPSyn.

To calculate the expected utility, we compute the amount of noise on average. Specifically, for any k-way
marginal (k is an integer between 3 to 8; and we found that the influence of k is not significant), we compare
the squared difference between the ground truth and the result value for each cell, and take average. Since
Laplace/Gaussian noise is added, the variance is given. Specifically, when ε′ and δ′ are given, we can calculate
the among of noise added, and the derive the variance.

4.2 Range of Application

Ideal Case. DPSyn is designed for working with publishing information about Census. That is, DPSyn
can handle tens of attributes (even more than one hundred if the attributes are binary). The method works
best when the analysis task needs to evaluate all attributes.

Basically, any problems that involves inspecting the data carefully can be handled well. Specifically,
identifying the relationship among attributes; causal inference; abnormal detection. Since a synthetic dataset
is generated, we expect to see roughly the same performance. But if a task only needs several specific
attributes, DPSyn will not perform as well as a ad-hoc methods, because intuitively DPSyn spreads privacy
budget among all the attributes, instead of concentrating the budget on the several important ones.

Cases that cannot be handled by DPSyn. DPSyn works under the condition that noisy marginals
can be generated. So when the noisy marginals cannot be obtained from the dataset, the method will not
work well. It is possible though to modify the dataset or the method to handle the specific problems. Below
we summarize the cases where our method cannot work, and propose tweaks for handling them. Note that
these cases are equally hard for most other DP-based methods.

7

First, when data can be updated. Like many other privacy-preserving algorithms, DPSyn currently
cannot handle the case when the data is constantly updated, because each publishing requires some privacy
budget. It is possible though, to run DPSyn multiple times with splited privacy budget. However, when the
data is constantly updated, DPSyn does not work. When the update is deterministic, on the other hand, it
is possible to extend DPSyn to include some update rules, so that the update actions can be modeled.

Second, when some attribute is non-categorical. For example, numerical values should be bucketized to
discret values in order for DPSyn to process. But one can only define buckets based on the sematics of the
attribute; it is unclear what is the optimal bucketization for the data. Even worse, DPSyn cannot handle
content data where the domain is very large or unbounded, such as text data, audio/video data.

Third, when the dataset is not in a relational database. Examples include graph models and streaming
models. The original notion of differential privacy was proposed to handle the counting queries in the
relational databases. Over the years, different notions have been proposed to handle different data types,
e.g., location indistinguishability. But since DPSyn is built on differential privacy, it will have difficulty
handling data types other than relational database. Adopting other privacy notions will be an interesting
future direction.

4.3 Complexity

In the first step, the method scans the dataset to construct the marginals. The computation grows linear
with the size of the dataset and the number of marginals, respectively. After that, injecting noise is fast,
but making the marginals consistent requires more time, since it is basically an optimization problem. It is
not clear what is the theoretical running time, but with a limit on the running time, the optimization can
always terminate soon enough and output reasonable result. Finally, the synthesize step is linear in the size
of the target dataset and the number of noisy marginals.

5 Evaluation Plan

We plan to evaluate the performance of the synthesized dataset by answering the marginal queries and
training machine learning models (e.g., regression/classification/clustering).

Metrics. Sum of Squared Error (SSE) is the metrics we use to measure accuracy of the marginal infor-
mation. That is, we compute the ground truth and calculate the sum of squared difference in each cell. For
the machine learning model, we use appropriate metrics such as mis-classification rate.

Environment. All algorithms will be implemented in Python 3.5 and all the experiments will be conducted
on a PC with Intel Core i7-4790 3.60GHz and 16GB memory.

Datasets. We will run experiments on the following four datasets.

• POS [19]: A dataset containing merchant transactions of half a million users.

• Kosarak [1]: A dataset of click streams on a Hungarian website that contains around one million users.

• Adult [2]: A dataset from the UCI machine learning repository. After removing missing values, the
dataset contains around 50 thousands records. The numerical attributes are bucketized into categorical
attributes.

• US [13]: A dataset from the Integrated Public Use Microdata Series (IPUMS). It has around 300
millions records of the United States census in 2016. Each record contains over 100 attributes.

The first two are transactional datasets where each record contains some items. We treat each item as a
binary attribute. Thus these two datasets are binary. When running experiments with k binary attributes,
we pre-process a dataset to include only the top d most frequent items. The later two are non-binary datasets,
i.e., each attribute contains more than two categories.

8

6 Related Work

Differential privacy has been the de facto notion for protecting privacy. Many DP algorithms have been
proposed (see [4, 16] for theoretical treatments and [9] in a more practical perspective). Recently, Uber has
deployed a system enforcing DP during SQL queries [5], Google also proposed several works that combine
DP with machine learning, e.g., [11].

There are existing work on the specific task of regression/classification/clustering. For example, we
have proposed [15] and [14] for classification and clustering, respectively. Compared with the ad-hoc
methods, our approach is more general, but may not achieve the optimal utility for the specific regres-
sion/classification/clustering task. Compared to other data publication approaches, our method preserves
more information and thus achieves better utility. Below we focus on the comparison with the general
methods.

To publish synthetic datasets, a commonly used approach is to train a generative model satisfying dif-
ferential privacy, and use the generative model to generate a synthetic dataset. For example, PrivBayes
[17] publishes a noisy Bayesian network that approximates the data distribution by several low-dimensional
marginals (histograms). PrivBayes determines the structure of a Bayesian network by first randomly se-
lecting (using Exponential Mechanism) an attribute as the first node, and then iteratively selecting another
attribute to create a new node with up to k nodes already created as the new node’s parent nodes. After the
structure is determined, PrivBayes perturbs the marginals needed for computing the conditional distribu-
tions of the data. This method, however, needs to call Exponential Mechanism many times, making utility
bad when the privacy budget is limited; and the overall utility is sensitive to the quality of the first selected
node.

Besides the Bayesian model, other models can also be trained. For example, there are methods that
assume the dataset is sampled from some statistical distributions (e.g., mixture models). The methods first
learn parameters from the dataset, then sample the synthetic dataset from the statistical models. To the
best of our knowledge, DPSynthesizer [8] is the only existing work that satisfies differential privacy. The
main limitation of these methods is that only a restricted set of knowledge can be conveyed by the models,
and oftentimes the dataset cannot be modeled perfectly. For example, although the height distribution is
expected to follow normal distribution, the reality may be different; and these differences will be the most
interesting findings.

There are also work that uses deep neural networks. For example, DP-GAN [18] trains a deep generative
adversarial network (GAN) with differential privacy, by injecting random noise in the optimization procedure
(e.g., stochastic gradient descent). However, the purpose of GAN is to generate data records that look
authentic, instead of looking similar to the original distribution, thus the GAN model cannot be used in the
problem.

References

[1] Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/.

[2] A. Asuncion and D. Newman. UCI machine learning repository, 2010.

[3] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private data
analysis. In TCC, pages 265–284, 2006.

[4] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and Trends in
Theoretical Computer Science, 9(3-4):211–407, 2014.

[5] N. Johnson, J. P. Near, and D. Song. Practical differential privacy for sql queries using elastic sensitivity.
arXiv preprint arXiv:1706.09479, 2017.

[6] W. Karush. Minima of functions of several variables with inequalities as side constraints. M. Sc.
Dissertation. Dept. of Mathematics, Univ. of Chicago, 1939.

[7] H. W. Kuhn and A. W. Tucker. Nonlinear programming. In Traces and emergence of nonlinear
programming, pages 247–258. Springer, 2014.

9

[8] H. Li, L. Xiong, L. Zhang, and X. Jiang. Dpsynthesizer: differentially private data synthesizer for
privacy preserving data sharing. Proceedings of the VLDB Endowment, 7(13):1677–1680, 2014.

[9] N. Li, M. Lyu, D. Su, and W. Yang. Differential Privacy: From Theory to Practice. Synthesis Lectures
on Information Security, Privacy, and Trust. Morgan Claypool, 2016.

[10] S. Meiser and E. Mohammadi. Privacy buckets: Upper and lower bounds for r-fold approximate differ-
ential privacy. 2018.

[11] N. Papernot, S. Song, I. Mironov, A. Raghunathan, K. Talwar, and Ú. Erlingsson. Scalable private
learning with pate. In ICLR, 2018.

[12] W. Qardaji, W. Yang, and N. Li. Priview: practical differentially private release of marginal contingency
tables. In Proceedings of the 2014 ACM SIGMOD international conference on Management of data,
pages 1435–1446. ACM, 2014.

[13] S. Ruggles, J. T. Alexander, K. Genadek, R. Goeken, M. B. Schroeder, and M. Sobek. Integrated public
use microdata series: Version 5.0 [machine-readable database], 2010.

[14] D. Su, J. Cao, N. Li, E. Bertino, M. Lyu, and H. Jin. Differentially private k-means clustering and a
hybrid approach to private optimization. ACM Transactions on Privacy and Security (TOPS), 20(4):16,
2017.

[15] D. Su, J. Cao, N. Li, and M. Lyu. Privpfc: differentially private data publication for classification. The
VLDB Journal—The International Journal on Very Large Data Bases, 27(2):201–223, 2018.

[16] S. Vadhan. The complexity of differential privacy. In Tutorials on the Foundations of Cryptography,
pages 347–450. Springer, 2017.

[17] J. Zhang, G. Cormode, C. M. Procopiuc, D. Srivastava, and X. Xiao. Privbayes: Private data release
via bayesian networks. ACM Transactions on Database Systems (TODS), 42(4):25, 2017.

[18] X. Zhang, S. Ji, and T. Wang. Differentially private releasing via deep generative model. arXiv preprint
arXiv:1801.01594, 2018.

[19] Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule algorithms. In Proceed-
ings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 401–406. ACM, 2001.

10

