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1. Introduction 

During the late 1990s, when many still believed that data stripped of IDs were unlinkable and 

therefore confidential, Federal agencies responded to privacy concerns among individuals and 

business enterprises about public release data. The Internal Revenue Service (IRS), for example, 

conducted a study of a possible linkage attack on a pending release of the Individual Tax Model 

Public Use File. A team of data linkage specialists and statisticians determined that “… there is no 

easy solution to minimize information loss and maximize disclosure protection …” (Winglee et. al. 

(2002)). Based on what we know today, one would have to excise the word “easy”. The question has 

become “What compromises in accuracy of information or privacy protection, or both, do we 

accept?” 

Growing demands for data and the escalating amount of available public information from various 

data sources, including from social media, administrative and large data warehouses (e.g., data.gov), 

combine with increasing capabilities and skills in record linkage and data science to prompt serious 

concerns about data privacy. The focus on re-identification of individuals or businesses within a file, 

once the basis for developing approaches for protecting privacy interests, has broadened, as stated in 

PCC (2017), to include linkage attacks based on any and all available public or commercial data 

sources. A data release can have an impact on a person’s privacy rights whether or not that person’s 

data appears in that release. Given the various degrees of “de-identified” datasets, record linkages 

compile data from various sources, add even more information to individual records, and greatly 

increase exposure risks. This so-called mosaic effect (OMB 2013) can compromise data privacy by 

accident or by providing more data for a malicious attack. Improved public access to masses of data 

and more powerful data transfer and computing technologies are having a global impact (e.g., 

AmStat News (2018)) particularly at national statistical institutes where there is a long tradition of 

releasing statistical data in the form of microdata (social surveys) and tables (survey responses, 

census, and business data). In addition, health researchers also have traditionally released data from 

clinical trials. Cases and controls have to consent to contribute data to, say, a trial of a new 

treatment. In medical research in particular, data privacy boards require informed consent of 

patients prior to a release of their data for research and shifts decisions to release data from owners 

of administrative data to individuals. This move toward privatization of research data shifts 

decisions to release research data from data owners, who follow public choice data utility-privacy 
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risk guidelines for making decisions in the public interest, to individuals whose concerns about their 

own privacy tend to override the value they place on scientific progress of benefit to many. For 

example, while McLaughlin (2010) presents a legal case for collection and de-identified release of 

state cancer registry data in the USA, state legislatures and registry administrators have reacted to 

threats of data exposures by curtailing releases of data to researchers who request them. For similar 

reasons the Social Security Administration (SSA) has largely blocked access of researchers to the full 

SSA Death Master File (DMF) and made searches for decedents among members of research 

cohorts a longer and more expensive process. Strong guarantees of individual privacy would help 

researchers make a stronger case for releasing high quality data.  

1.1 Traditional Statistical Disclosure Control Approaches 

Statistical disclosure control (SDC) treatments of data suppression, coarsening and perturbation 

were generally developed to address traditional types of disclosure risks, such as identity and 

attribute disclosure. In times when data custodians keep strict controls on the release of data, there 

was little concern for inferential disclosure where an intruder can infer knowledge about a data 

subject with high probability through manipulating data releases.  

Figure 1 shows a typical SDC process, starting with a risk assessment. The risk analysis will, at the 

very least, identify combinations of variables that may help to identify a respondent’s data when 

considered together. The disclosure risk assessment focused on identity and attribute disclosure and 

included probabilistic record linkage matching procedures (e.g., Jaro 1989) that could determine 

whether a data record is a likely match with an external file record, and re-identification risk 

estimation based on probabilistic modelling (Reiter 2005b, Skinner and Shlomo 2008-). The purpose 

of conducting disclosure risk analysis is to inform the SDC process for each data file, for instance, 

the coarsening and suppression, and controlled random treatments (e.g., perturbation). In the end, 

an impact assessment should incorporate a risk-utility mapping, where results from various iterations 

of SDC methods and their parameters lead to determining the optimal SDC approach having the 

best trade-off for the data product in terms of holding disclosure risk below a tolerable threshold at 

the onset and maximizing data utility given that constraint. The SDC process typically involves a 

reasonable approach that can ensure protection of confidentiality while minimizing the impact of 

SDC on the integrity of the data.  
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Figure 1. General SDC process 

 

It is now much more difficult for data producers to disseminate detailed data for individuals in ways 

that are convenient to researchers. This objective of balancing risk reduction with retention of data 

utility remains, while there is pressure to develop better approaches for releasing and protecting data. 

1.2 New Forms of Data Dissemination and Differential Privacy 

There is growing demand for more open and easily accessible data, especially as disseminated 

through national statistical institutes. Some web-based platforms have evolved or are under 

development to supply users with opportunities for research through flexible table builders, remote 

analysis servers, and use of synthetic microdata without the need for human intervention to check 

for disclosive outputs. This means that the paradigm of disclosure risks is shifting away from the 

traditional identity and attribute disclosures and is moving towards concerns about inferential 

disclosure where perturbative approaches are needed to protect the confidentiality of data subjects. 

Researchers are recognizing the need for perturbation with larger degrees of information loss in 

return for more flexible and accessible data.  

Given concerns about inferential disclosure, this has led to the statistical community actively 

reviewing and researching the formal privacy framework developed in computer science and known 

as differential privacy (DP), in which data are protected by additive noise and/or randomization 

(see: Dwork, et al., 2006b, Dwork and Roth, 2014 and references therein). Why DP? DP subsumes 

all disclosure risks through the worst case scenario while employing privacy-by-design so disclosure 

risk is quantified a priori. Furthermore, while DP bounds the amount of risk protection, it also 

controls the amount of infused noise. The theory ensures that when dropping any one record of the 

file, very little can be learned about that record in estimates derived from data that is protected by a 

DP mechanism.  
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The concise and strong theoretical foundation of DP leaves many questions to address during the 

course of implementing a DP mechanism. The basic form of a privacy guarantee presented by 

Dwork (2006a) is the 𝜀- Differential Privacy defined for a perturbation mechanism M as follows:  

𝑃(𝑀(𝑎) ∈ 𝑆) ≤  𝑒𝜀𝑃(𝑀(𝑎′) ∈ 𝑆) 

for all subsets S of the range of M and neighboring databases 𝑎 and 𝑎′ differing by one individual.  

A relaxed DP mechanism is the (𝜀, 𝛿)-Differential Privacy which adds a new parameter 𝛿 as follows: 

𝑃(𝑀(𝑎) ∈ 𝑆) ≤  𝑒𝜀𝑃(𝑀(𝑎′) ∈ 𝑆) + 𝛿 

Here we use the definition of (𝜀, 𝛿)-Differential Privacy instead of 𝜀 –Differential Privacy since the 

parameter 𝛿 can be thought of as a utility measure. It is the degree that we allow a ‘slippage’ in the 

bounded ratio of 𝜀 –Differential Privacy and, assuming that 𝛿 is very small, it is possible to 

substantially improve the utility of the released data. For example, 𝛿 represents the probability of not 

perturbing beyond a certain cap in a table of counts thus narrowing the range of possible 

perturbations.  

Assuming 𝛿 = 0, we define a loss function l with an argument of  representing the privacy loss 

budget and an argument  controlling loss of accuracy in the protected output relative to the 

original output. l(,) expresses the combined loss corresponding to a choice of two parameter 

values. Requiring e = 0.1, for instance, enables a DP mechanism M to add noise to a given output 

and generate a protected output with a maximum possible accuracy level of 𝑙 = 1 - a on a convex 

PAF curve. Requiring a = 0.95 (𝑙 = 0.05), in contrast, limits e to a much higher value on the same 

PAF curve. 

The possible pairs of values of 𝜀 and 𝑙 lie on or below a privacy-accuracy frontier (PAF) similar to 

the one displayed in Abowd (2017). The frontier shows the optimal pairs of parameter values  and 𝑙 

for an original output and mechanism M. 

The PAF with an overlaid social welfare function (SWF), in the case of a data provider who in effect 

owns data, or a data supply curve in the case of entities who may choose to provide or refuse to 

provide data, serves as an aid to assigning values to the  and  parameters. At the least, a PAF with 
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a SWF or supply curve would show a sketch of the options for mechanism M given the original 

output. 

The current state of the mechanism M in the context of a public release data set would likely 

generate a PAF that has privacy loss values  acceptable to data providers paired with  values 

unacceptable to data users, and the other way around. Even so, the exercise of creating a somewhat 

formal framework for assessing trade-offs between tighter privacy controls and better data accuracy 

will improve dialogs between information technologists and statisticians, system developers and 

researches, data collectors and providers, and statistical institutes and the data users they serve. For 

no other reason, it would be worth the effort to avoid producing differentially private output that 

compromise data privacy and has no value to researchers or to the public.  

The range of  on a horizontal axis of a graph represents the acceptable range of privacy loss. The 

range of 𝑙 on the vertical axis has a scale of {0 … 1}. A simplified, hypothetical example is presented 

in Figure 2. 

Figure 2. Privacy-Accuracy Frontier (PAF) for hypothetical DP Mechanism M and an original 

output 

 

With some exceptions, data providers granting informed consent to privacy loss focus on the risk to 

them as individuals and place much less weight on accuracy of data and statistics. All the more 

reason, it follows, to find ways to shift the PAF upward and make data release decisions easier for 

data providers. 
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One path toward improving the terms of the privacy-accuracy trade-off would be to define accuracy 

of output not merely by comparison to private data and their distributions, but also by the accuracy 

of estimates derived from them. Carefully filtering of noise improves the accuracy of small area 

statistics, time series cycles, statistical/machine learning of image and sound classes, and many other 

specialties, yet filtering may also remove incidental variations that distinguish individual observations 

from others in a sample. Any one sample from a population may include extreme observations that 

would identify an entity contributing data to a public release data set. Resampling from a large 

sample generates sub-samples in some instances that contain fewer of the identifying extreme 

observations. Releasing a DP sub-sample along with the distribution of the original sample would 

improve data utility and still guarantee a prescribed risk of exposure. An array of methods, including 

Bayes factors and posterior distributions, raking and regularization, multiple imputation, and time 

series smoothing, as examples, may add further resistance to linkage attacks while improving the 

power of a sample to detect truly significant differences among classes of entities or discover 

clusters of similar entities. We intend to exploit noise filtering to improve data accuracy and reduce 

risk of data breach. 

Ligett (2017) advocates turning the impact on accuracy of a privacy guarantee on its head by 

searching in an automated but principled manner for mechanisms that achieve a maximum privacy 

guarantee given an acceptable level of accuracy. Empirical risk management (ERM) methods offer a 

complementary strategy for controlling risks of privacy loss.  

Given a choice, researchers and the public usually prefer to have access to microdata and tables 

rather than summary statistics or model parameter estimates. Data users tend to suspect information 

loss in synthetic tables. Further, many statistical institutes and government agencies have supplied 

organizations and interest groups with microdata and tables or have contracted for public use 

microdata and tables. Generating superset microdata or tables by multiple imputation may perhaps 

prove more representative of a population than a single sample drawn from that population, and this 

feature may help allay some of the concerns of researchers and the public about synthetic and highly 

perturbed data.  
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1.3 Examples of Relevant WesTeam’s Experience 

The range of experiences of the WesTeam include applications of all the skills necessary to develop 

a DP-based data product: 

 Creating numerous public use microdata files; 

 Developing risk assessment software (InitialRisk for the National Center for Education 
Statistics); 

 Developing perturbation software, including DataSwap for the National Center for 
Education Statistics, SDCPert for the Census Bureau, and the proprietary WesSDC 
Toolbox;  

 Developing data analysis tools (National Household Travel Survey R Toolkit1 and 
Westat’s WesDaX®); 

 Developing record linkage software (WesLink) and performing research with record 
linkage approaches; 

 Developing software for disclosure risk assessment through advanced probabilistic 
modelling; 

 Developing noise infusion algorithms for table generating systems; and 

 Research into DP under contract to the National Center for Science and Engineering 
Sciences. 

 

2. Challenge Proposal 

In this section we provide a conceptual solution that describes a combination of methods in SDC 

and differential privacy (DP) when publicly releasing microdata files that contain numerical, geo-

spatial, and categorical data. We propose algorithms that include randomized mechanisms and 

additive noise with the aim of optimizing privacy and utility for a range of statistical analyses 

methods: exploratory analysis, generation of count data, regression, classification, and clustering 

analysis and other models not yet specified. An important advantage of using a DP mechanism is 

that it is not secret. The parameters of the noise addition/ random mechanism can be made public 

                                                 

1 More information at https://github.com/Westat-Transportation/summarizeNHTS.  

https://github.com/Westat-Transportation/summarizeNHTS
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and researchers are then able to account for the perturbation in their statistical inferences. This 

greatly increases the utility of the data. 

There are two potential approaches that would allow the breadth of statistical analyses models 

mentioned in the challenge:  

1. Produce a synthetic dataset (or multiple synthetic datasets) using a mechanism that is 
defined as differentially private (in combination with other SDC methods) and would 
depend on Bayesian posterior distributions as mentioned in Section 1.2. Then, all 
further exploratory and statistical analyses carried out on the protected data, including 
those specifically mentioned in the challenge, would also be differentially private. The 
synthetic data generation needs to consider numerical and categorical variables as well as 
geo-spatial data. 

2. Develop an online web-based remote analyses server that will go beyond generating 
tables, exploratory analyses and basic statistics, and also support forms of regression 
modeling (linear, GLM, binary) and other statistical modelling procedures. It has been 
established in Rinott, et al. (2018) that online flexible table generation, which we will call 

‘ Tablebuilder’, can be protected under a mechanism that is (𝜀, 𝛿)- differential private in 
combination with standard SDC techniques that maintains a privacy guarantee with 
reasonable utility. Here we propose to extend the Tablebuilder to a remote analyses 
server. This proposal is more similar to the spirit of DP which is defined as an output 
perturbation mechanism.  

We address each approach separately: 

2.1 DP Synthetic Data 

Differentially private synthetic data (or multiple releases of synthetic data) is an area of active 

research currently under investigation across both statistical and computer science communities. 

Under this setting, the synthetic data can be used in place of the original data and all statistical 

analyses methods can be applied, for example, regression modelling, classification and clustering. 

Here, we propose to follow the approach proposed by Raghunathan, et al. (2001) and van Buuren 

(2007) based on multiple imputation sequential regression models which depend on conditional 

Bayesian posterior distributions and can handle both continuous, binary and categorical variables. 

Bowen and Liu (2016) provide an overview of approaches that have been explored for generating 

synthetic data for counts, histograms and numerical variables and list their pros and cons. They also 

propose differentially private data synthesis techniques but our proposed approach has less reliance 
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on distributional assumptions and all variables can by synthesized together thus improving the 

properties of joint distributions. We also discuss protection of geo-spatial variables in Section 2.1.4.  

2.1.1 Initial SDC Approaches 

Prior to carrying out the synthetic data generation, common SDC approaches should first be 

applied. In consultation with the users of the data, an initial SDC step is carried out based on 

defining which variables need to be in the data and how they should be defined. Direct identifiers 

are removed from the data. Age and other quasi-identifiers are typically coarsened into groupings. 

The level of geographical information is to be determined according to the requirements of the 

users. In this stage, we can also apply k-anonymity and related approaches to ensure that coarsened 

quasi-identifiers have some a priori privacy protection. In DP all variables are considered identifiable, 

but it may not be plausible in practice. For example, there may be some variables that do not need to 

be masked, e.g., due to legislation, such as some demographic variables in the US Census. Therefore, 

the dataset may need to be split into two sets of variables: 𝑦 = (𝑦1, . . . , 𝑦𝐿) variables that will need 

to be masked and 𝑥 = (𝑥1, . . . , 𝑥𝑅) variables that do not need to be masked.  

2.1.2 Description of Multiple Imputation Sequential Regression Modelling 

We first describe the multiple imputation procedure as set out by Raghunathan, et al. (2001) and 

shown to be useful for the purpose of generating synthetic data in Raghunathan, et al. (2003) and 

Reiter (2005a) in the SDC literature. The joint distribution for generating synthetic values is 

developed through a sequence of conditional regression models where each successive regression 

includes variables from the preceding regressions. We generate the data by drawing values from the 

corresponding predictive distributions. The types of regression models used can be linear, logistic, 

Poisson, generalized logit or a mixture of these depending on the type of variable to be synthesized. 

Multiple copies of the synthetic data are generated and inference carried out on each of the data sets 

and results combined for point and variance estimates under well-established combination rules.  

Using the notation of Raghunathan, et al. (2001) and under the simple case of a continuous variable 

𝑌 in the data (possibly transformed for normality), we fit a linear regression model Y = Ub +

e, e~𝑁(0, 𝜎2𝐼) where U is the most recent predictor matrix including all predictors and previously 
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generated variables based on 𝑥 and 𝑦. We assume that 𝜃 = (b, 𝑙𝑜𝑔𝜎) has a uniform prior 

distribution.  

The coefficient b is estimated by solving the score function 𝑆𝑐(b; 𝜎) = ∑ 𝑈𝑖′( 𝑌𝑖 − 𝑈𝑖b) = 0𝑖  and 

obtaining b = (U′U)−1U′Y . The residual sum of squares is 𝑆𝑆𝐸 = (Y − Ub)′(Y − Ub) having 

𝑑𝑓 = 𝑟𝑜𝑤𝑠(Y) − 𝑐𝑜𝑙𝑠(U). Let T be the Cholesky decomposition such that T′T = (U′U)−1  . To 

draw from the posterior predictive distributions we generate a chi-square random variable 𝑢 with 

degrees of freedom 𝑑𝑓 and define 𝜎∗
2 =

𝑆𝑆𝐸

𝑢
. We then generate a vector 𝑧 = (𝑧1, … , 𝑧𝑝) of standard 

normal random variables where 𝑝 = 𝑟𝑜𝑤𝑠(b) and define 𝛽∗ = b + 𝜎∗ T𝑧 . The synthetic values for 

𝑌 are 𝑌∗ = U𝛽∗ + 𝜎∗ 𝑣 where 𝑣 is an independent vector of standard normal random variables with 

dimension 𝑟𝑜𝑤𝑠(U). More details are in Raghunathan, et al. (2001) as well as descriptions for other 

types of models for binary and categorical variables that all depend on solving score functions.  

We note that there are other ways to produce synthetic data in the SDC literature but using the 

multiple imputation sequential regression modelling approach is conducive to our proposal for 

adding a layer of protection based on DP.  

2.1.3 Proposal for DP Noise Addition 

We propose to add random noise to the estimating equations when estimating the coefficient b as 

described in Section 2.1.2 similar to the approach taken in Chipperfield and O’Keefe (2014) as 

follows:  

 Define a random perturbation vector 𝑣 = (𝑣1, … , 𝑣𝑝) and solve the score function 

𝑆𝑐(b; 𝜎) = ∑ 𝑈𝑖′( 𝑌𝑖 − 𝑈𝑖b) = 𝑣𝑖 .  

 We define 𝑣𝑖 = 𝑠𝑖𝑙𝑖 where 𝑠𝑖 is the maximum contribution a record on the microdata 

makes to the i’th coefficient of the estimating equation. Then we multiply by 𝑙 =

(𝑙1, … , 𝑙𝑝) independently generated from the Laplace distribution having the range 

 (-1,1). Since E(𝑣)=0 and b̃ = b + (U′U)−1𝑣 we obtain a value of b̃ that is an unbiased 
estimate of b. It remains to be seen in simulation studies the stability of score functions 

for obtaining an estimate b̃ under different types of models and for the case of skewed 
data. Under these scenarios, a rejection-acceptance algorithm can be applied. 

 We then follow the approach for generating the synthetic values replacing the 

coefficient b with the coefficient b̃ in Section 2.1.2 
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We use the same intuition for adding Laplace noise in estimating equations for other types of 

models in the Raghunathan, et al. (2001) approach for binary and categorical variables. 

The perturbation is of the same order as adding or removing the record with the largest contribution 

of each estimating equation. To obtain the (-1,1) interval under the Laplace Distribution, we first 

note that we draw random perturbations with probability proportional to exp (−
𝜀|𝑢|

∆𝑢
) where u is a 

utility function defining the maximal difference between original and perturbed values and ∆𝑢 is the 

sensitivity. In this case for an interval (-1,1), 𝑢 takes on the value of 2 and assuming a sensitivity of 1 

we obtain that for the unit interval we generate Lap(0, 1/ 𝜀) noise (Dwork and Roth, 2014, p. 31). 

We propose that the shape parameter in the Laplace distribution is 0.5 to ensure the interval (-1,1) 

but further investigation is needed through simulation studies to assess the level of protection and 

the utility under the proposed approach. We note that since the multiple releases of synthetic 

datasets are defined as DP for a given privacy budget, any subsequent statistical analysis performed 

on the datasets and combining rules will also be differentially private.  

Finally, we note that the proposed approach can be modified for the case of generating multilevel 

data or longitudinal data where individuals can appear more than once in each wave of the survey 

and the residuals are correlated. Sakshaug and Raghunathan (2014) create synthetic data by 

hierarchical Bayesian modeling. In the first step, sequential regression modeling is carried out to 

approximate the joint distribution and in the second step the regression coefficients undergo an 

additional hierarchical model to preserve the between-cluster relationships. In this case, we can add 

Laplace noise to the estimating equations in the first stage as proposed above.  

2.1.4 Geo-spatial Variables 

There has been some work related to generating synthetic values for geo-coded data under the SDC 

framework. Wang and Reiter (2012) use a conditional bivariate regression model on latitude-

longitude coordinates and then generate synthetic values of new latitude and longitude values from 

these models. To ease computational burden, they also propose using CART to develop the classes 

within which latitude-longitude should be synthesized. Starting with longitude, within each node of 

the tree, they carry out a Bayesian bootstrap and then use a Gaussian kernel density estimate to 

smooth the values. The synthetic longitude is drawn from the estimated mixture density. 

Synthesizing latitude is carried out similarly but conditional on the synthetic longitude as well. 
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Zandbergen (2014) also discusses random perturbation to spatial masking within an SDC framework 

and illustrates different approaches that can be implemented. These include randomly perturbing the 

location based on a circle of fixed radius around the true coordinates. For example, the random 

perturbation can be based on a bimodal Gaussian displacement. In summary, both Zandbergen 

(2014) and Wang and Reiter (2012) depend on distributions to generate synthetic coordinates and it 

is possible to add random Laplace noise either through the estimating equations as shown in Section 

2.1.3 or directly on to the synthetic coordinates themselves to ensure differential privacy. The utility 

of these approaches will be the subject of further investigation.  

2.2 Remote Analysis Server 

It is well known that it is better to induce perturbation at the output level rather than the input level 

with respect to improving data utility, although this comes at the risk of depleting a privacy budget. 

The approach of producing synthetic microdata described in Section 2.1 from which all statistical 

analysis methods can be carried out remains to be tested on whether the generated data has 

analytical value. Recent publications, however, in both the computer science and statistical literature 

have shown that it is possible to produce differentially private tabular data with good utility. Rinott, 

et al., 2018 have addressed the implementation of differential privacy through an exponential 

mechanism on a web-based flexible table builder (which we call ‘Tablebuilder’) for census counts 

from both a theoretical and applied perspective. Other examples in the computer science literature 

are Barak, et al. (2007), Yaroslavtsev, et al. (2013) and Qardaji, et al. (2014). As mentioned, DP is an 

area of active research and has been only applied to a few operating systems (Garfinkel, 2015), 

though increasingly in recent years2. 

Rinott et al. (2018) show that perturbing tabular data through a Tablebuilder, based on a discretized 

Laplace distribution has a guarantee of privacy while showing good utility for 𝜀, in the range of 1 or 

2, and a very small 𝛿 for an (𝜀, 𝛿) −differentially privacy approach. The 𝛿 basically defines the cap 

on the amount of perturbation that is allowed in the Tablebuilder. In addition, they show that with 

public knowledge of the DP mechanism, statistical inference for contingency tables can be adjusted 

for the perturbation. In fact, it has been recommended at the US Census Bureau that to produce a 

synthetic dataset of the US Census, they propose to perturb tabular data according to a DP 

                                                 

2 See for example https://blog.cryptographyengineering.com/2016/06/15/what-is-differential-privacy/  

https://blog.cryptographyengineering.com/2016/06/15/what-is-differential-privacy/
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mechanism and then reconstruct the microdata based on the set of perturbed tables. This option 

may perform well if there are few variables in the microdata, with some variables that will not be 

subject to perturbation, but it will likely not provide a dataset that can handle the range of statistical 

analyses methods mentioned in this challenge.  

The approach in developing a Tablebuilder with DP protection is to make it into a non-interactive 

mechanism. This means that perturbations are consistent across counts having the same domain and 

categories of variables spanning the table and hence there is no privacy budget spent beyond the 

initial budget set up in the development stage. This is carried out as follows: each record in the 

underlying microdata of the Tablebuilder is assigned a ‘key’. Any time individuals in the microdata 

are aggregated to produce a count within a table defined by a domain, the keys are also aggregated 

and then adjusted by the domain total to form the seed of the perturbation. Therefore, counts in the 

same domain and having values of categorical variables spanning the table will always have the same 

seed and hence the same perturbation, no matter how many times the table is generated. As an 

illustration, assume we request a table of two cells with a query on whether individuals in a 

geographical region have or have not a disease. Recall that the principle of DP is that the output will 

be indistinguishable for a database 𝑎 and a neighboring database 𝑎′ with one individual removed. 

Under the consistency principle of a Tablebuilder, if we do not account for the domain total in the 

microdata key, it will be evident in which cell the target individual will belong since only one cell will 

change and the other cell will not change. However, by adjusting the key under the consistency 

property to include the domain total, both cells will change in this case and it will not be possible to 

learn in which cell the target individual is located. 

For this challenge, we propose to extend the Tablebuilder to a remote analyses server allowing other 

types of statistical analyses methods besides the generation of tables and the analyses of categorical 

variables including the principle of consistency to preserve the privacy budget. The users access the 

data via an online interface similar to the Tablebuilder where the statistical model can be called via 

the interface. SDC literature on remote analyses servers include: O’Keefe et al. (2009) on regression 

outputs from a remote analyses server, O’Keefe, et al. (2012) on survival analyses, and Atikur and 

O’Keefe (2017) on generalized linear models.  

[As an example of a remote analysis server (differential privacy mechanism not implemented to 

date), see https://wesdaxdemo.wesdemo.com/Default.aspx . Enter the word “demouser” (but don’t 

https://wesdaxdemo.wesdemo.com/Default.aspx
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include the quotation marks) for the User Name and the word “Westat!1” for the Password (but 

don’t include the quotation marks).]  

As discussed in Section 2.1.1, initial SDC approaches first need to be applied. There are many ‘rules-

of-thumb’ when developing a remote analyses server, such as the types of statistics, models and 

outputs that would be allowed, minimum population threshold levels on the covariates of the 

models and more. Generally, there are restrictions in the outputs which do not allow single data 

points to be disseminated so the server will not allow minimum and maximum values, original 

scatter and residual plots, etc. Similar to the Tablebuilder, any statistical method that is based on 

sufficient statistics can be made to have consistent perturbations through the use of microdata keys 

similar to the concept in the Tablebuilder.  

Here we propose to make the remote analyses server differentially private by adding Laplace noise 

to estimating equations (see Section 2.1.3) for regression modelling or directly into sufficient 

statistics of counts and exploratory statistics as described in Rinott, et al (2018). The use of 

microdata keys to ensure the consistency property described above fixes the privacy budget at the 

design stage of the DP mechanism. More specific details will be developed and fine-tuned for each 

statistical analysis method that we develop within the remote analysis server. For example, for the 

regression modelling in the remote analysis server, we can apply the technique in Section 2.1.3 of 

adding Laplace noise to the estimating equations and for exploratory analysis we can add Laplace 

noise directly into the statistics, and in both cases we can control the seed of the perturbation 

through the microdata keys to ensure consistency across domains. All scatter plots and residual plots 

would be presented as sequential box-plots with Laplace noise added perturbation. For geo-coded 

variables, the remote analyses server can produce maps containing statistical information that would 

be protected through coarsening and additive Laplace noise-infusion. Another way to protect 

statistical information in maps is to provide heat maps. Other combinations of SDC and DP will be 

exploited to provide high utility in the remote analysis server. 

3. Data for Case Studies and Simulations  

The case studies and simulations needed to develop the two DP approaches can be carried out on 

available public-use files that are freely available for download over the internet. These datasets have 

typically undergone the type of initial SDC approaches mentioned in Section 2.1.1 with direct 
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identifiers removed and the coarsening of quasi-identifiers. Some examples of such datasets are: 

Survey of Doctorate Recipients 2013 or 2015 and other data available at 

https://ncsesdata.nsf.gov/datadownload/ and the Life in Transition Surveys available at 

https://www.ebrd.com/cs/Satellite?c=Content&cid=1395236498263&d=Mobile&pagename=EBR

D%2FContent%2FContentLayout. In addition, there is a range of census and survey data from 

around the world that are available from the IPUMS website at https://www.ipums.org/ . Another 

important type of data to test our proposed approaches is longitudinal data, such as datasets from 

Understanding Society https://discover.ukdataservice.ac.uk/?q=understanding+society and English 

Longitudinal Study of Ageing datasets https://discover.ukdataservice.ac.uk/?q=elsa available from 

the UK Data Service. We note the importance of conducting the evaluation on both 

census/administrative data as well as survey-weighted data. 

Since geo-coded data are typically not available on public files, there will be a need to generate these 

data based on known geographical information and clustering algorithms. The fact that geo-coded 

data may not be ‘true’ data will not negate the development and testing of the two proposed DP 

approaches. Once algorithms have been fully developed, they can be tested within a national 

statistical institute on real geo-coded data.  

4. Risk-Utility Assessment 

As mentioned in Section 1.2, it is necessary to carry out a risk-utility mapping to assess the DP 

mechanism for a given output according to a selection of parameters 𝜀 and . Besides the privacy-

by-design parameters of DP, we also propose to measure disclosure risk for identity and attribute 

disclosure using standard methods of probabilistic record linkage and probabilistic modelling to 

estimate a probability of re-identification. In addition, we also assess utility through a range of 

distance functions between the original and perturbed data (for example, Hellinger’s Distance and 

the Kullback–Leibler divergence, propensity score metrics, etc.) as well as a range of metrics based 

on information loss in statistical analyses (for example, confidence interval overlap, the impact on 

Chi-Square tests for independence or R2 in regression modelling, etc.). We will conduct the risk-

utility mappings as demonstrated in Section 1.2 to identify optimal parameters under the DP 

approaches.  

https://ncsesdata.nsf.gov/datadownload/
https://www.ebrd.com/cs/Satellite?c=Content&cid=1395236498263&d=Mobile&pagename=EBRD%2FContent%2FContentLayout
https://www.ebrd.com/cs/Satellite?c=Content&cid=1395236498263&d=Mobile&pagename=EBRD%2FContent%2FContentLayout
https://www.ipums.org/
https://discover.ukdataservice.ac.uk/?q=understanding+society
https://discover.ukdataservice.ac.uk/?q=elsa
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5. Summary 

Traditional methods of privacy protection focus on removal of direct identifiers, coarsening, 

perturbation, and data suppression have failed under assault by new linkage and integration attacks 

within an ever-widening data environment. Any data element related to an individual entity identifies 

the entity to some degree, especially when linked to other data sources containing similar attributes. 

Some elements contribute to research and public information in general. A data release has to fit its 

purpose. We have to capture information about a lesion on a persons’ palm, for instance, while 

blurring fingerprints of no value to a medical researcher. A differential privacy standard guarantees 

that each record released contributes to useful information about a group sufficiently large to 

support meaningful statistical estimates and predictions. Bayesian posterior distributions, 

regularization, and multiple imputation contribute to SDC in that they blur incidental features of 

entities that would distinguish records of one entity but contribute little to knowledge of groups of 

entities. These techniques are being explored in the context of DP. 

We have recommended next steps forward to focus on pragmatic ways of implementing differential 

privacy standards in public releases of data and statistics. We have shown two proposals to produce 

differentially private analyses in combination with standard SDC approaches, the first based on 

generating synthetic microdata and the second based on a remote analyses server. In the first case of 

synthetic microdata, all statistical analyses methods such as regression, classification, clustering and 

other algorithms which are not known in advance can be carried out. It remains to be seen what 

level of utility can be obtained; that is, whether the level of accuracy in synthetic microdata will 

support useful analytic research. In the second case of a remote analyses server, we can develop the 

capability of most desired statistical analyses methods within the server, for example, forms of 

regression modelling (linear, GLM, binary (classification) etc.), clustering, exploratory analyses and 

mapping based on geo-coded data. In addition, the remote analyses server includes flexible table 

generation from which chi-square tests for independence and log-linear modelling can be carried 

out. Finally, since parameters of differential privacy are not secret, they can be used to adjust for the 

perturbation in statistical analyses. For example, Rinott, et al. 2018 demonstrate how the knowledge 

of the DP mechanism and parameters in a Tablebuilder can be used to adjust statistical inference on 

tabular data to produce unbiased test statistics.  
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We believe that both DP options are viable and simulation studies should be undertaken. It is likely 

that statistical analyses conducted through the remote analyses server will lead to higher utility 

compared to the case of generating synthetic microdata and then carrying out the statistical analyses, 

as it is well known that output perturbation outperforms input perturbation (O’Keefe and Shlomo, 

2012) with respect to utility requirements. Future developments and improvements to the remote 

analyses server will increase the range of statistical modelling that can be carried out leading to future 

improvements. We note that the computing requirements and feasibility of producing synthetic data 

and developing a remote analyses server are well within the capabilities of national statistical 

institutes and other organizations and both proposed approaches can handle new forms of data as 

well as allow for the balance between privacy and utility.  
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