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Preface 

This design is presented as completion of the Honors Program at University of San Diego under 

advisorship of Dr. Kathleen Kramer and Dr. James Gilb. The work here, while done individually, 

is done as contribution to the University of San Diego CubeSat Team, established in 2016, in 

hopes of advancing CubeSat communications technology while still considering cost restraints. 

 

The scope of this thesis only goes as far as a design, and due to time restrictions does not delve 

into hardware development or physical testing. Focus will also primarily be on the RF (radio 

frequency) elements of the phased array system, as there is much to be designed still constitute a 

fully functioning space-ready CubeSat design. 
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Introduction 

Due to their size, CubeSats and other small satellites are severely limited in power and 

communication capabilities. Small, sometimes non deployable solar panels restrict potential 

transmission power, and physical layout limits space for higher gain antenna configurations, such 

as parabolic dishes, reflective arrays, and horn antennas. These restrictions have had the 

tendency to force CubeSat missions to have slower communications speeds, limiting the amount 

of data that can be transferred per overhead pass. So far this limitation hasn’t been severely 

restraining on missions, as smaller CubeSats typically acquire a relatively small amount of data 

with only a few sensors. However, higher downlink speeds would allow for more data collection 

as sensors continue to be manufactured smaller and cheaper, squeezing more capability into the 

1000 cm2 CubeSat frame. A higher throughput standard for CubeSats would also allow for 

innovative approaches to satellite networking and beyond low earth orbit capabilities. 

The purposes of this study are to investigate and design the RF components of a phased array 

antenna for 1U CubeSat application, to establish the feasibility of higher speed, lower power, 

low cost CubeSat communication capabilities. 

Background 

CubeSats 

CubeSats, a standardized form factor for small satellites, are rapidly disrupting the satellite 

business. In the 1980’s and 1990’s, common research or surveillance satellites were large, heavy, 

and required long term projects that cost tens or even hundreds of millions of dollars. As such, 

designers ensured that these satellites would perform hundreds of tasks and have lifespans 

upwards of 10+ years. Recent technologies however are allowing governments, businesses, and 

universities to accomplish similar goals with cheap, lightweight, low power, electronics due 
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largely in part to the recent surge of smartphone components. With computing power similar to 

the processor found in a smartphone, small satellites can perform specific missions at a fraction 

of the cost and timeframe. They may not be quite as capable as older larger satellites, but they 

cost only tens or hundreds of thousands of dollars, and can be developed and launched 

exponentially faster. 

In an effort to bring the smallsat cost down even further, the CubeSat specification was 

developed by a partnership between California Polytechnic University and Stanford University 

in 1999, with the first successful mission in 2003 [8]. This specification defines a physical 

standard for small satellites to adhere to, allowing companies to mass produce sub systems for 

the satellite that any payload can easily integrate to (otherwise, a “design from scratch” approach 

is required for all subsystems). This also simplifies the launch process, as anyone can design 

around the CubeSat standard and know with certainty that it will integrate into and deploy 

properly from the launch system, as previously, satellites required complicated custom 

integration.  

Phased Arrays 

The other primary technical field this thesis delves into is phased array antenna technology. First 

conceptualized in 1905 by Nobel laureate Karl Braun [6], phased array antenna radios use 

multiple antennas in conjunction, varying the phase of each antenna’s signal to get the 

propagation patterns of each to constructively interfere with each other in certain directions and 

deconstructively interfere in others [7]. This creates a stronger signal at specific angles to the 

antenna, allowing the radio to “target” where it sends the majority of its power, resulting in 

further, clearer, higher speed transmission. Commonly used in military and radar applications, 

phased arrays are seldom deployed in space applications, much less smallsats/CubeSats (though 
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designs exist, documentation on deployed phased antenna is scarce) [2]. The 2011 launched 

Messenger spacecraft is an early documented space-based application of a phased-array system. 

This field encompasses a large number of classified missions, as well, where there are a 

significant number of projects with documentation that is not publically available [12]. 

General Design 

Limitations & Considerations 

Being designed around a single unit CubeSat, space and power are severely limited. When 

designing a phased array, the number of elements is critical to its successful operation and beam 

forming capabilities. However, with only 1U there isn’t much space for a large array. Deploying 

panels after launch and separation can increase effective area (and antenna aperture), though it 

quickly increases mechanical complexity as well. Power must also be considered, as typical 

CubeSat solar panel configurations only generate a few watts of power [1]. Other subsystems 

rely on this power as well, restricting the power available to the transmitter. For purposes of this 

design, the payload itself will be the phased array transmitter as a technology demonstration, 

allowing more in the power budget for the phased array.  

Additionally, reaction wheels can consume considerable amounts of power orienting the satellite, 

though with the beam steering capabilities of a phased array physical orientation will be less 

critical for successful data connection. Lower power magnetorquers will provide sufficient earth 

facing orientation, with the beam steering handling the specific directionality of the high speed 

telemetry. 

Link frequency must also be chosen carefully, as higher frequency can allow for higher 

throughput, though may also be inefficient for long range communication (due free space path 
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loss). As one of the primary benefits to a CubeSat is cost, availability of low cost/low volume 

parts at this specified frequency will be crucial for design feasibility. Apart from frequency 

choice though, lower cost for materials and general components will be important to keep with 

CubeSat convention. 

Primary Concept 

The phased design array consists of a 4 element array in a 2x2 helical antenna configuration 

arranged on one 10cm x 10cm face of a 1U CubeSat. The link will operate on the 2.4GHz band 

via the 802.11b standard protocol in CCK mode, for a downlink speed of 11 Mb/s. Transmission 

will be power intensive, so the array will avoid excessive power consumption by only 

transmitting when orbiting within line of site orbit from the ground station, allowing the battery 

to recharge before its next flyover. Figure 2 shows a physical representation of the 1U CubeSat 

with four helical antennas to scale, and figure 1 describes the general layout the system 

components.  

 

Figure 1: Block Diagram of Overall Design 
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Figure 2: Physical Layout 

Frequency & Protocol 

Most CubeSat communication systems operate at 415MHz or 900MHz [8], with some running at 

2.4GHz.  For this design 2.4GHz is chosen, as the higher frequency allows for higher data rates, 

though not so high to undergo unrecoverable free space path losses from the sat to ground 

distance, ranging from 200km to 1000km. 2.4GHz also has a much smaller wavelength than 

typical CubeSat 415MHz/900MHz telemetry systems, allowing four helical antennas designed 

for 2.4GHz to fit nicely on one face. At 900MHz, the diameter for a single helical antenna would 

be 11.3cm, wider the entire 10cm x 10cm working space of a 1U CubeSat side. 2.4GHz also is a 

very common band, resulting in a plethora of cheaply available off the shelf parts. Being such a 

common band, interference and noise can be an issue, though with a ground station on top of a 

roof pointing directly to the sky, it will be less of a concern being isolated from other Wi-Fi, 

Bluetooth, and amateur networks. 

802.11b as the system protocol works nicely, due to its networking capability and availability for 

quality components while operating CCK mode allows for 11MB/s, significantly higher than a 

large majority of CubeSat and small sat data links [8]. 

Antenna 

 Helical antennas are chosen here as the physical parameters at 2.4GHz operation fit nicely on a 

single side of a 1U. More importantly however, they typically offer higher gain than patch 
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antennas (commonly used in phased array configurations), ensuring a link connection with high 

data rates. Relatively simple in design and construction, they also offer a sort of “self-deploying” 

feature, in that the coil will have spring force capable of uncoiling itself [13]. Mechanical 

restriction before deployment may involve nichrome wire to control release of the helical 

antennas. More design will need to be done however to perfect the layout and deployment once 

in orbit. 

Part Selection & Description 

Primary active RF components for both the CubeSat and the ground station were chosen 

carefully with necessary requirements and power limitations in mind. Non-RF components 

(power, MCU, etc.) extend beyond the purposes of this design, as they are heavily dependent on 

other subsystems.  

CubeSat Parts 

Transceiver - The 802.11 capable transceiver needs to be low power and easily interfaced. High 

power output is not needed as signal amplification is done later in the path with the power 

amplifier, whereas there is actually an upper limit of signal power acceptable by the phase 

shifter, so adjustable gain is necessary. CCK mode capability (11Mb/s), though common on 

802.11 transceivers is still a necessary trait. The Microchip RN171 LAN module with high speed 

SD-SPI interface, same interface used for writing to SD cards satisfies criteria nicely, with only 

120mA current draw at 3.3V.  

Phase Shifter - The Mini Circuits JSPHS phase shifter is actually one of very few small package, 

low power options available for the 2.4GHz band. Less than 2dB insertion loss is plenty low, and 

320° phase shift capability is much more than needed.  
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Power Amp - For the power amplifier two viable options appear, one being lower power, the 

other having satisfactory low power requirements with much higher power output. The 

Skyworks SE2568U Wireless LAN PA is designed for the 802.11b standard, and provides up to 

20 dBm output, while drawing 528 mW while amplifying. It also is relatively easy to use in only 

an 8-pin package. The Qorvo TQP9224 Small Cell PA pulls almost double the power, but is 

capable of putting out 24dBm and higher (nonlinear region) in a slightly more complicated 14 

pin package. If power budget allows in conjunction with the rest of the CubeSat subsystems, this 

option will help ensure link budget completion with its higher gain. 

Ground Station Parts 

Antenna - The ground antenna on the receiving end of the link needs to have a high gain, and the 

L-Com 30dBi steel grid parabola provides just that. Being highly directional, it may require a 

mechanically steerable base to “follow” the CubeSat at is orbits across the ski, though the phased 

beam steering array on the CubeSat may be able to accommodate for that.  

Receiver - Without power or size limitations on a ground station, a condensed and easy to use 

package with high sensitivity is the best option for the receiver. Marketed for the somewhat now-

defunct “Wi-Max” venture, the Ubiquiti Bullet M provides a rugged weatherproof transceiver 

with Ethernet LAN connection for easy PC integration and highly sensitive -97dBm receive 

sensitivity. Software for easy control are included as well, and is available for approximately 

$80.00 USD. 

Power Budget 

An in depth power budget is not needed for this study, as feasibility is the primary concern. As 

such, as long as typical 1U CubeSat power capabilities can be adhered to, the system will be 
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established as viable. With deployable solar panels in sun synchronous orbit, a 1U can generate a 

peak of 10W, while being able to charge batteries and/or capacitors to be discharged for the 

around twenty minutes of line of sight time over the ground station per orbit (number of orbits 

per day depends on the orbit angle and height). Table 1 establishes the transmitting power 

requirement with the 2x2 array to be under 3.5W, well under what a CubeSat would be able to 

supply for a substantial amount of time with fully charged batteries: 

Table 1: Power Budget 

 

When not transmitting, and using a low power MCU (such as an MCU from the Texas 

Instruments MSP430 line), power draw would be on the order of microwatts, fully allowing 

batteries to charge (assuming no other data collection or sensor operation was to take place). 

RF Design 

Link Budget 

The link budget calculates the feasibility of the wireless link by keeping track of the factors that 

degrade and boost the signal. With a margin for error, if the link budget totals to be at or over 

0dB, the link should close in practice. If the budget is below the negative of the safety margin, 

then theoretically the wireless link physically cannot connect [11]. 
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Losses 

The largest and primary path loss by far associated with a long range point to point line of sight 

link is the free space path loss, which incurs simply from distance being between the transmitter 

and receiver, as the signal spreads out as it propagates. According to the free space path loss 

equation (sometimes also expressed as the “Friis Equation”), the value is also directly 

dependent on frequency, as shown by figure 3:  

 

 

Figure 3: Free Space Path Loss Illustration and Equation 

As the link is theoretically line of sight exclusively, with space to ground requiring no 

geographic interference and ignoring atmospheric absorption, the only other path loss to incur is 

that of the cabling and components, which is low with surface mount parts without long cables. 

The 2 dB insertion loss from the phase shifter and assumed 2dB cable losses result in only 4 dB 

more in loss, whereas the FSPL has at least a loss of 146 dB at a minimum 200km orbital height. 

The link margin, somewhat arbitrarily chosen depending on the system application (higher for 

more important mission critical systems) is also subtracted as a path loss, assuming worse than 

anticipated conditions. 10dB link margin is a value commonly chosen for space based 

applications [5]. 
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Gains 

On the other end, the antenna gains and both transceiver power and receiver sensitivity provide a 

gain in the link budget calculation. Values pulled from the data sheets and antenna design specs 

provide for easy summation. The receiver sensitivity is subtracted as a negative number, as the 

negative dBm value indicates how small a signal can be for the receiver to still reliably detect it, 

and is thus subtracted from the equation resulting in net a positive [4]. This receiver sensitivity at 

-97dBm provides the largest value of the link budget gains. 

Summary 

Table 2 and table 3 shows the summary of the link margin at both extremes of the wireless link 

distance, 200km when orbiting directly overhead, and 1000 km when crossing the horizon. 

Table 2: Link Budget at 1000km 
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Table 3: Link Budget at 200km 

 

The surplus is negative at 1000 km, meaning that assuming worst case conditions the link will 

not close; although that is given the 10 dB link margin. Theoretically, the link could still 

complete at the farthest possible distance. In actuality, it will most likely be spotty until coming a 

little bit closer, unless more power is allocated for an even higher power amplifier, or an even 

more sensitive receiver is integrated.  

Antenna Design 

For helical antennas, a series of equations gives the physical design parameters needed for a 

given frequency, number of turns, and fraction of wavelength for turn spacing.  Figure 4 shows 

the equations used, and figure 5 shows what parameters those physically refer to. 

𝐺 = 10.8 + 10 ∙ 𝑙𝑜𝑔10 ((
𝐶

𝜆
)

2

∙ 𝑁 ∙ (
𝑆

𝜆
)) 

𝐷 =
𝜆

𝜋
               𝑅 = 0.75 ∙ 𝜆 

Figure 4: Helical Antenna Design Equations Used 
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Figure 5: Helical Antenna Physical Parameters 

 

For a 2.4 GHz antenna, with N = 5 turns at λ/4 spacing, the optimal helical antenna yields 

11.8dBi gain with 153mm overall length, 39mm diameter, and 30mm spacing between coils. 

While potentially a little optimistic by a few dB from actual real world antenna gain, the spacing 

and physical size fits nicely onto one 10cm x 10cm face of 1U CubeSat. Figure 6 shows a model 

to proportionate scale of what this configuration would look like: 

 

Figure 6: Scale Layout of Helical Antennas 
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Phased Array Modeling 

Antenna Model 

Before completing a model for the phased array, a model for the individual antenna element is 

needed. Initially, Matlab simulation was attempted following the “Antenna and EM Modelling 

with Matlab text” [10], though was abandoned due to complication and time consumption. 

Though powerful and deeply customizable, creating a full custom model within Matlab is 

beyond the scope of this project. However, using the freeware software program 4NEC2, based 

off of the NEC (Numerical Electromagnetics Code) simulation engine, a helical antenna of 

designed physical parameters can be easily constructed and simulated at any frequency and 

stimulus. The figures below depict the results, which at maximum gain of 9.9dBi, are only about 

1dB off from the quick equation calculation, consistent with the findings from the Gunthard 

Kraus article [9]. Figure 7 shows the front page of 4NEC2 with parameters of the specific 

antenna design and figure 8 shows the resulting polar radiation plot simulation of that antenna. 

Figure 9 shows a nicely rendered 3D model of the same data. 

 

Figure 7: 4NEC2 Antenna Specification Page 
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Figure 8: Polar Pattern from 4NEC2 Helical Antenna 

 

Figure 9: 4NEC2 3D Model of Helical Antenna Radiation 
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To create the phased array model however, a Matlab plot is needed to be able to mathematically 

operate on it. To quickly create this, a cubic spline function and twenty-four points of data from 

the simulation output are used to create a similar polar plot, now useful within the Matlab 

environment, as seen in figure 10. 

 

Figure 10: Comparison of 4NEC2 Model and Matlab Immitation, Note Scale Differences 

As shown by figure 10, the cubic spline is capable of producing a very close match to the 

original function. The shape of the lobe isn’t identical however, as the scales are different. The 

simulated model goes below 0 dBi, and the Matlab plot ends at 0 for practicality purposes (below 

0 dBi the gain is negligible). Above 0 dBi however, the plot is plenty accurate for our purposes 

of simply trying to understand how the phased array will generally affect the radiation pattern, 

and to get beam width estimates and beam locations given different phase shifts. 

Array Model 

The phased array pattern is obtained by simply multiplying the propagation pattern of the 

individual antenna elements by the calculated array factor at a given phase shift. The array factor 

itself is dependent on the operation frequency, number of elements in the array, spacing between 
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the elements, and the phase shift between the elements. Refer to appendix for the actual 

equations used in Matlab code. The following figure 11 shows the derivation of the array factor 

equations used. 

 

Figure 11: Array Factor Equation 

 

With equations and constants set, all that’s left is to vary the phase shift between elements (Beta) 

and see how the beam is shifted in turn (note these phase shifts are constant between each phase 

shifter, i.e. phase control is “unweighted”) [3]. Figure 12 shows the results of the plot of the 

array factor value as the phase changes, and figure 13 shows the result of different array factors 

multiplied with the original element pattern. This shows a phase shift range of +/-40 degrees, 

which yielded best results and a +/-30 degree beam shift pattern. Shifting higher than 40 degrees 

resulted in significant back/side lobes and notably less gain. Given the application and long 

distance of the link, a total 60 degree range for beam steering is plenty to ensure the maximum 

gain pointed directly at the ground station, regardless of satellite disorientation. 
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Figure 12: Array Factor Value at Various Degree Shifts 

 

Figure 13: Final Phased Model with -40, 0, and 40 Degree Shifts 

 

Wilkinson Power Divider 

A power divider is required in order to split the RF power evenly between the four elements and 

the transceiver, the most straightforward method of which being through a Wilkinson power 

divider. A Wilkinson power divider simply splits a conductive microstrip trace into two and 

matches the impedance of the input while having a specific overall length for the given 

frequency, with a resistor in between the two outputs. For application, bends and curves must be 

added to the layout, which affect the RF response. The following diagram, figure 14, shows the 

relationships of the trace lengths and impedances needs for ideal power splitting. 
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Figure 14: Wilkinson Power Divider Design Specification 

 

Sometimes the required trace length can be rather long, resulting in a splitter that takes up 

significant space on a PCB, so an equivalent lumped element divider can be designed, replacing 

a line trace with two capacitors and an inductor in a pi configuration with equivalent impedance 

(parallel capacitors can be combined, requiring 4 capacitors and 3 inductors for each split, as 

shown in figure 15). This however does not easily take into account the added trace lengths and 

their added impedance on a board layout, making simple integration difficult, requiring tuning of 

numerous inductors and capacitors. A lumped element LC splitter without physical microstrip 

traces was quickly designed and simulated with positive results, although it was abandoned for 

the Wilkinson simplicity with regards ease of actual layout on a board.  
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Figure 15: Lumped Element Divider Equivalent Schematic 

Appendix figures 19 and 20 show the original design and S-parameters of the LC design, 

however the 2.4 GHz microstrip design was based off of a phased array design done by Allen 

Peters at California Polytechnic State University, San Luis Obispo [12]. Peters’ design was 

tweaked somewhat for layout purposes, as shown in figure 16, 17, and 18.  

 

Figure 16: 1 to 4 Wilkinson Microstrip ADS Design 
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Figure 17: S Paramters for Microstrip Design 

 

 

Figure 18: Microstrip Design Board Layout 

From the S-parameters plot in figure 17, the gain [S(2,1), S(3,1), S(4,1) and S(5,1)] on each 

output is -6.3dB, only .3dB less than the ideal ¼ amount of input power at each output. The 

reflection S(1,1) has a spike downward at 2.4GHz as designed and goes below -25dB. These 

performance specs are plenty fine given the application. 
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Conclusion 

Summary and Future Work 

With the power budget totaling at just a few watts and link budget completion with low power 

COTS parts, feasibility of a 4 element phased array downlink communication system has been 

confirmed. The system theoretically is capable of sending downlink data faster than any 

successfully deployed CubeSat at 11Mb/s [8], and will be able to run on low enough power to 

provide power to other subsystems and sensors (though not much, provided there is ample 

charging time with deployable solar panels). Aside from the high data rate, phased array 

technology itself has not yet been successfully launched on a CubeSat (though there are designs 

and work towards it), and potentially may have never been done on a small sat in general, being 

that there is little documentation on space based phased arrays. Hopefully the work presented 

here contributes to that push forward in small satellite communications technology. 

 

Being only a theoretical thesis design, physical hardware testing obviously still needs to take 

place to further confirm the feasibility of an 11Mb/s phased array CubeSat system. Even before 

that, is still design work to be done, as this study focused only on the RF components needed. 

With regards to the communication system, MCU control of the phase shifters, as well as MCU 

interfacing to the transceiver, though not overtly complex, still requires work. An entire 

schematic and board layout for all components selected is needed as well, with power supply 

power, to simply run a connection test. From there mechanical and electrical integration with an 

entire CubeSat bus will provide a fully working standalone system with the ground station. 
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Appendix 

Supplementary Figures 

 

Figure 19:Example of Matlab Script for Phased Array Calculation 

 

 

Figure 20:Lumped Element LC Design in ADS 
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Figure 21: S Parameters of LC Design 
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