Development of Printed Lithium-Ion Microbatteries for **Compact Rechargeable Hearing Aid Device**

Prof. Yury Gogotsi, Sokhna Dieng, Dr. Ruocun (John) Wang, Kyle Matthews, Alex Inman

Currently, over

Target Problem

- Among adults aged 45 to 64, 2.8% of men and 1.9% of women utilize hearing aids. More than 14% of individuals aged 65 and above rely on hearing aids for auditory support.
- Hearing aids relied on disposable, removable batteries that have
 - Insufficient power
 - Long charging time
 - Contain toxic components
 - Short cycle life

1.5 billion people worldwide live with hearing loss

Microbattery Design

Design Specifics

- Replacing steel shell button batteries by printed interdigitated battery
 - Graphite anode
 - LCO cathode
 - Gel polymer electrolyte,
 - MXene as binders and conductive additives.
 - MXene as current collectors
 - PDMS (packaging)
- Advantage of the design: improved specific energy and power density, more flexible, reduced weight, volume and thickness of the battery, leading to lighter hearing aid devices, and ensuring a comfortable fit and discreet appearance for users.

Team Introduction

The A.J. Drexel Nanomaterials Institute (DNI) Team

Prof. Yury Gogotsi Dr. John Wang

Professor

PhD Student

PhD Candidate

Kyle Matthews

PhD Candidate

Alex Inman

Industrial Partners

INERLABS

