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Abstract—The viability of utilizing the frequency domain 

electromagnetic (EM) fingerprint of passive Ultra-High 

Frequency (UHF) Radiofrequency Identification (RFID) tags as 

the basis for a digital twin resolver is explored. A framework is 

laid out for a digital twin resolver utilizing the XGBoost machine 

learning algorithm to classify EM fingerprints of tags attached to 

physical objects to associated digital counterparts. Preliminary 

analysis indicates an ability to differentiate between RFID tags 

based on the Electronic Product Code (EPC) with 99% overall 

accuracy, meaning a machine learning model can act as a resolver 

to identify digital twins by analyzing and classifying EM 

fingerprints with differing EPC content if the training database is 

large enough.  

Keywords—Digital Twin, RFID, Electromagnetic Fingerprint, 

Machine Learning. 

I. INTRODUCTION 

A digital twin (DT) is a replica of a physical object in the digital 

or virtual world. The purpose of the digital twin is to provide 

necessary feedback which can then be utilized to improve upon 

its physical twin [1]. Even though the concept of the DT was 

first created in 2003 by Michael Grieves at the University of 

Michigan [2], it has become a subject of interest among 

researchers and academics recently with the proliferation of IoT 

and machine learning (ML) [3]–[6]. Based on the sophistication 

of the physical system different levels of DT can be created 

including pre-digital twin, adaptive digital twin, and intelligent 

digital twin [7]. A pre-digital twin emphasizes risk mitigation 

while the adaptive and intelligent digital twins focus more on 

development via ML and reinforced learning. Digital twin 

technology has realms of possibilities in smart manufacturing, 

Industry 4.0 [8], safety management [9], automation [10], 

reinforced learning [11], and more. Digital twins can be created 

using two main categories: (1) data-driven digital twins and (2) 

model-based digital twins [12]. Model-based digital twins 

usually maintain the connection to their physical twin to 

represent the dynamic and static behavior of the system 

whereas data-driven digital twin uses data information from 

different sensors to model their physical twin which is seen to 

demonstrate both known and unknown parts of the physical 

system [13]. In practice, both model-based and data-driven 

digital twin models are used in tandem to model the overall 

physical system [7].  

Radio Frequency Identification (RFID) tags utilize backscatter 

for data transmission and object identification [14]. RFID is 

utilized in IoT systems in the ultra-high frequency (UHF) band 

(860-960 MHz) [15]. Passive RFID tags are significantly 

popular because of their low cost, no battery requirement, 

memory availability in the form of Electronic Product Code 

(EPC) and user memory banks, and versatile applications on 

different fronts like localization [16], supply chain 

management, IoT [17], and more. Of particular importance is 

the EPC memory bank, which acts as memory allocated for an 

idiosyncratic numerical code for universal identification of 

products [18]. Passive RFID tags have been utilized in several 

DT models for applications, such as leakage detection using 

coarse-grained backscatter signal which is tested in real-world 

digital twin system Pavatar [19][20], a unified modeling 

language (UML) based framework for modeling digital twins 

[21], digital twin of paper products warehouse [22], digital twin 

representation model of retail and apparel industry [23]. These 

utilized the tracking function via EPC memory content of the 

RFID tags in the creation of data-driven digital twins. Reliance 

on such a cataloging convention alone runs the risk of tag 

cloning. Cloning of RFID tags remain a key problem going 

forward for digital twins.  

A virtually non-replicable property of RFID tags suitable for 

cloning prevention in a DT is their electromagnetic (EM) 

fingerprint [24]. EM fingerprint refers to signal data obtained 

from excited RFID tags in the time or frequency domain. The 

uniqueness of these signals taken at any instance can be 

recognized by smart machine learning algorithms. This EM 

fingerprint is dependent on multiple factors such as the EPC 

memory banks and the manufacturing process of the tags. 

This paper lays the foundations for an RFID EPC EM 

fingerprint-based, data-driven digital twin resolver which can 

be implemented to create any level of the digital twin. The 

resolver will be able to locate the digital object based on 

frequency spectrum signal strength data via passive tags 
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embedded or attached to the physical counterparts, making it 

cost-effective. Previous digital twin resolvers based on RFID 

focused on the use of cataloging and inventory management, 

limiting use cases to industrial supply chains or specific 

products. The proposed resolver will be able to create and 

allocate unique keys for all digital twins. Multiple keys cannot 

be made for the same digital twin as each key will be 

determined by the signal emitted by the attached tag, which 

should be only replaced if not functioning. The EM fingerprint 

cannot be replicated just by knowing the memory content and 

configuration of the embedded passive tag. Therefore, this DT 

model increases resistance to RFID tag cloning. RFID 

technology can be integrated into IoT systems for object 

tracking and management, ensuring seamless integration 

without any pervasiveness [25]. 

The rest of the paper is divided and organized into the following 

sections. Section II describes previous works on RFID-based 

digital twin systems and similar use cases of EM fingerprinting, 

solidifying its position as an identification key in a digital twin 

resolver. Section III describes a design for the resolver and 

associate network. Section IV presents evidence towards the 

successful implementation of EM fingerprinting in a digital 

twin resolver environment.  The results are discussed in Section 

V and conclusions about the hypothetical digital twin resolver 

are drawn in Section VI. 

II. RELATED WORK 

RFID tags have been employed in both the existing digital twin 

and modeled digital twin. Azangoo [21] makes the use of RFID 

tags in the digital twin system. Pavatar, an industrial IoT system 

for ultra-high voltage converter station (UHVCS) management 

[20], where two RFID tags are utilized to detect the leakage 

based on different patterns of RSSI signal strength and phase 

variations. RFID tags have been utilized by [22] to model 

digital twins based on the UML class diagram in which RFID 

tags are utilized to trace objects on the factory floor. Maizi and 

Bendavid [23] implement available RFID, Wi-Fi, and software 

infrastructure on a pilot warehouse digital twin where the 

ceiling of the warehouse, product pallets, and forklifts are 

equipped with RFID tags as a means for identification and 

position estimation whereas [20] utilizes RFID tags to capture 

real-time data of items picked by customers which are 

implemented in DT prototype for apparel retail store. 

Periaswamy et al. [24] showed that RFID tags had unique EM 

fingerprints compared to their counterfeit counterparts, which 

indicates that the cloning problem for digital twins will be 

avoided and a transferable and unique key can be generated 

from the EM fingerprint. Bertoncini et al. [26] also indicated 

that the EM fingerprint may differ due to the manufacturing 

process, not just EPC content, which further solidifies the 

notion of cloning prevention. Yang et al. [27] used a non-

intrusive and easily implementable EM fingerprinting method 

to characterize user-device interactions with the help of time-

varying unique EM patterns, each associated to the use pattern 

of a specific user. Remley [28] showed that this technique could 

be feasibly applied to WLAN devices. 

Although RFID tags have been used in different DT models, 

this paper presents a holistic approach to the possible use of 

RFID tags in the DT system based on the electromagnetic 

fingerprint of each RFID tag based on the tag’s EPC or 

identifier associated.  

III. DIGITAL TWIN RESOLVER INFRASTRUCTURE 

The proposed resolver system consists of an accessing device 

with internal memory serving as a personal database for all 

devices owned on the consumer end (computer, smartphone, or 

any other smart device connected to the digital realm), a  

spectrum analyzer that collects RFID tag signal strength data in 

the frequency domain, a database containing multiple signal 

strength readings from every RFID tag associated with each 

digital object, and the digital twin resolver, which will be a 

machine learning model trained on the aforementioned 

database.  The spectrum analyzer reads the signal from the tag 

and saves the signal strength in the decibel-milliwatt unit across 

the entire UHF RFID spectrum. This data is saved by the 

accessing device and sent to the machine learning model for 

classification. 

 

 

Fig. 1. Digital Twin Resolver Infrastructure Diagram 



Once the algorithm matches the signal to its digital counterpart, 

the accessing device receives this information and assigns the 

identity to the new device or verifies the identity of a device 

with an existing digital twin. The model cannot be deceived by 

tag cloning because of the properties of an electromagnetic 

fingerprint signature obtained from an RFID tag [24].  This 

proposed system is shown in Figure 1. which includes an 

antenna attached to an RFID reader and spectrum analyzer to 

generate and read tag signal strength respectively.  

 

This resolver will be able to address the following concerns 

associated with data-driven digital twins –  

• Due to association of one RFID tag with an 

individually unique EM fingerprint, the resolver will 

be able to universally identify everything without any 

duplicate errors. No two EM fingerprints will be the 

same thus, ownership conflicts will not arise and each 

fingerprint resolves to one object only. 

• Owner authentication will be based on data stored in 

local servers. The machine learning model will be able 

to classify specific fingerprints without error, enabling 

perfect authentication. The ownership transfer will 

automatically happen once the fingerprint enters a new 

user database after permission from the previous 

owner has been granted. This will also be used to 

verify data and identities. 

• Data protection and privacy are also achieved due to 

each RFID EM fingerprint providing data irrelevant to 

the object it resolves to. 

• Passive UHF RFID tags are low-cost and battery-free 

products, thus they are also scalable to any degree and 

can be used universally for all objects. These tags are 

versatile and can be used in other applications such as 

localization and supply chain management in 

conjunction with providing EM fingerprints.  

TABLE I.  TAG SPECIFICATIONS 

 Beontag A61F [29] Confidex Carrier Classic [30] 

Air Interface 
Protocol: 

EPCglobal UHF Class 

1 Gen 2 (ISO 18000-

63) 

EPCglobal UHF Class 1 Gen 
2 (ISO 18000-6C) 

Operating 
Frequency: 

Global (860-960 MHz) Global (860-960 MHz) 

IC Type: Monza R6-P Impinj Monza 4QT™ 

Memory: 
EPC 128/96 bits, User 

32/64 bits, TID 96 bits 

EPC 128 bit, User 512 bit, 

TID 96 bit 

EPC Memory 

Content: 
Unique, auto-serialized Not guaranteed unique 

Applicable 

Surface 
Materials: 

Wood, plastic, 

cardboard, rubber, 
cotton tissue, denim 

Non-metallic surfaces 

Operating 

Temperature: 

-40° to +85°C (-40° to 

+185°F) 

-35° to +85°C (-31° to 

+185°F) 

 

IV. PROOF OF CONCEPT 

To gather preliminary evidence towards the effectiveness of 

RFID tag electromagnetic fingerprinting, frequency domain 

signal strength data was gathered from 4 different RFID tags. 

Two of these tags were Beontag A61F RFID Paper Tags [29], 

and the other two were Confidex Classic Carrier RFID tags 

[30]. 

 

From an initial inspection the tag specifications as seen on 

Table I, the Confidex tags have higher user memory bank (512 

bits) compared to Beontag (32 bits), as well as running different 

chips. The only similarity between the two tags is the EPC 

memory (128 bits). The EPC memory of each tag of any one of 

these manufacturers was filled with two different types of data. 

The first EPC was a mix of different numbers and characters –

300833B2DDD9014000000001, which was referred to as Type 

1. The other EPC was a single digit preceded by zeros – 

00000000000000000000000002, being referred to as Type 2. 

This covers any possible EPC conventions for industrial or 

universal use to assign to digital twins. As shown in Figure 2, 

for the case of Beontag tags, the signals have slight but distinct 

differences across the different EPCs. A machine learning 

model can further determine these differences and would be 

able to classify tags according to EPC data, laying the 

foundation for a Passive UHF RFID EM fingerprint based 

digital twin resolver. 

 

 
(a) 

 
(b) 

Fig. 2. Signal Strength vs. Frequency data obtained from spectrum analyzer 

for Beontag tags with (a) EPC Type 1 (b) EPC Type 2 



 

As described in the previous section, data was generated using 

a RFID reader connected to an antenna that excited the RFID 

tags. The tag reply signal was captured by a spectrum analyzer 

in the entire UHF RFID spectrum. There were 4 tags, 2 

Confidex tags with both aforementioned EPC types, and 2 

Beontag tags with the same EPC types. Data collected from 

each tag is shown hypothetically in Table 2, each such file has 

2 columns representing the axes and 4001 points representing 

the columns. For each tag, 100 signal strength readings were 

taken in the dBm (decibell milliwatt) unit. All of the classified 

data was then divided into two subsets – training and testing 

data. The training dataset was used to train the machine learning 

model and the testing dataset was used to evaluate the trained 

model. While training the machine learning model, only the 

EPC content of the tags was considered to be the target, the tag 

manufacturer was not a factor in making this distinction. It was 

not considered as a feature for the training of the model. But, 

this feature was used to make further subsets based on 

manufacturer to evaluate the performance of different types of 

tags. The machine learning model emulates the resolver of the 

described prototype. 

TABLE II.  SAMPLE DATA FROM SPECTRUM ANALYZER READING 

Frequency (MHz) dBm 

899.99 -99.53 

900.00 -98.99 

… … 

… … 

929.99 -97.68 

930.00 -100.02 
 

V. RESULTS 

The XGBoost model was trained using 100 observations of 

each of the four tags. During the evaluation, the test data was 

split into Beontag and Confidex tag observations. The trained 

model was 100% accurate on the training data of both types of 

tags in terms of EPC detection. However, the model was able 

to differentiate EPC content of Beontag tags 95% of the time 

for test data, while it was able to do so only 55% of the time for 

the Confidex tags.  Figure 2 shows that the model failed to 

detect the second type of EPC in the Confidex tag. 

VI. CONCLUSION 

The predictions obtained from the XGBoost model show that 

the tag with relatively inferior specifications showed more 

unique detectable characteristics across different EPCs. This 

variance may occur due to manufacturers implementing certain 

aspects of the LLRP protocol for specific use cases the tags are 

designed for while maintaining industry requirements and 

standards, similar to the implementation of Bluetooth protocol 

in wearable Bluetooth devices [31]. This indicates that the 

Beontag tags are suitable for the EM fingerprint digital twin 

resolver system since these tags exhibit more variable behavior 

across different units and EPC data, which may be due to less 

allocation in overall memory, meaning less data transmission 

within the used spectrum, minimizing congestion of variation 

in the signal read by the spectrum analyzer. Larger datasets are 

likely to result in a more accurate model. However, preliminary 

results are  promising, with 99% overall accuracy for the 

Beontag tags. To further improve upon this, EM fingerprinting 

for electronic devices may also be a more effective idea to use 

as a key to its digital twin. The RFID signal may further add to 

the uniqueness of the device, making cloning impossible. 

Future work includes fleshing out the resolver in terms of 

ownership management and security measures to protect data 

stored in central and personal databases by implementing an 

encryption protocol. 

 

 

 
(a) 

 
(b) 

Fig. 3. Normalized Confusion Matrices for EM fingerprint identification (a) 

Beontag tags (b) Confidex Tags 
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