menu

NASA Tournament Lab

 38,389

Honey, I Shrunk the NASA Payload, The Sequel

Build miniature payloads to make lunar exploration more effective.

This challenge is closed

stage:
Won
prize:
$800,000

This challenge is closed

more
Summary
Timeline
Updates8
Forum6
Teams488
Press
Resources
Meet the Winners
Meet the Participating Teams
Webinar Series
Summary

Overview

This Challenge is only open to the 14 teams that won the first Honey, I Shrunk the NASA Payload Challenge. You can learn more about the teams and apply to join a team here

 

In the previous Honey, I Shrunk the NASA Payload Challenge, 14 teams were recognized and awarded for their insightful and creative approaches to developing miniature payloads that will help collect information about the lunar environment and potential lunar resources.  This challenge offers those winning teams the opportunity to vie for up to $800,000 in development funds and prizes.  There will be an opportunity for teams to build out their ranks and fill in missing areas of expertise.  Additionally, in order to help teams be as successful as possible, both phases will include opportunities for NASA to review team plans and/or their progress and to provide specific, individual feedback. 

Challenge Structure 

Phase 1 - Project plan development and team building

  • Final payload development plans must be received by January 4, 2021
  • Teams have until November 10, 2020, to submit their initial plans for preliminary review and feedback from NASA
  • Teams have until January 4, 2021, to recruit new team members to fill in any expertise gaps
  • Up to four teams will advance to Phase 2 and will share $675,000 in award money to support development

Phase 2 - Prototyping 

  • Phase 1 winners have approximately 12 months to execute against their project plans and deliver at least three, identical, working prototypes to NASA by February 11, 2022, along with the finalized documentation package by 28 January 2022.
  • Teams will meet regularly with a NASA project manager throughout this phase to ensure steady progress against the project plan
  • Teams have until October 29, 2021 to submit their initial documentation packages for preliminary review and feedback from NASA
  • After NASA testing and evaluation of the received prototypes, one winner will receive a $100,000 prize and one runner up will receive a $25,000 prize

Note: Phase 2 is contingent upon NASA receiving highly credible project plans in Phase 1.  See the Guidelines section for further details.



 


Guidelines

Updated November 2, 2020. See track changes here.

The timeline for this challenge is extremely ambitious. But the payoff is considerable - ultimate success in this endeavor could mean that your payload is deployed on the lunar surface! 

In order for NASA to meet timelines associated with the Artemis program, it must receive your working prototypes by February 18, 2022 and the corresponding Documentation Package by January 28, 2022.  NASA wants you to be successful and will be very participatory in this challenge.  NASA has already each team with the internal feedback garnered by their submissions to the preceding ideation challenge so that teams can see where weaknesses have been identified and react accordingly.  Additionally, there will be an opportunity during the Phase 1 open submission period to have NASA review your preliminary project plan so that you can strengthen your submission and address any missing elements.

To be successful in this prototype competition, your team will have to provide:

  • A highly credible payload project plan that meets NASA’s technical specifications and describes the operation scenario by January 4, 2021
  • 3 or more identical, working prototypes at a technology readiness level (TRL) of 5 or greater by February 18, 2022

An updated version of the Small Lunar Payload User’s Guide is available under the Resources tab.  You are strongly encouraged to familiarize yourself with this expanded set of specifications.  Note: the payload user’s guide may undergo minor revisions, due to the dynamic nature of the CLPS and Artemis programs.

Phase 1

The 14 winning teams of the Honey, I Shrunk the NASA Payload challenge are all eligible to participate.  No new teams will be accepted into this challenge.  However, the 14 teams are allowed to recruit new team members to round out their teams with additional competencies and expertise, as needed.  If you are interested in joining a team, please visit the Teams tab to review the needs of teams accepting new members. All team members must abide by the eligibility rules, in particular those regarding country of origin (see Rules section for more details).

The deadline to submit complete and final payload project plans is January 4, 2021.  NASA wants you to make it tough for them to select Phase 1 winners!  So be sure to take advantage of all the tools and resources available.  Specifically, 

  • Review the feedback to your winning ideation submission.
  • Be ready to submit a preliminary project plan by November 10, 2020.
  • Use the Team Matching function to help augment your team.
  • Be sure to include all the required elements of the submission.

One of the most important things for success in this phase is the development and submission of a comprehensive and realistic timeline to support your activities in the prototyping phase.  NASA’s extensive experience in this area has shown them that a highly credible timeline is a key indicator of success in ambitious projects like this one.

If you are an international participant, be sure to allow sufficient time in your timeline for your prototypes to clear customs and arrive at NASA.  You are strongly encouraged to start immediate research and planning to ensure that you have all necessary paperwork in place to support your prototype delivery satisfying both US and your country’s import/export rules and regulations.  A good place to start is to check with your own country’s state department.

NASA will review the preliminary project plan from any team that has been submitted by November 10, 2020.  High-level feedback will be provided by November 20 to each team.  This feedback is intended to help teams create the best, most complete version of their project plans possible by helping teams to consider all important factors, highlight any missing elements, and/or more fully address key concerns.

Your preliminary submission should include:

  • The Preliminary submission form
  • A completed Quad Chart (see template in Resources tab)

Your complete and final submission to Phase 1 should include:

  • The Phase 1 submission form
  • A completed Quad Chart
  • A completed Payloads Specifications and Capabilities form (see form in Resources tab)

NASA will select up to four teams to advance to Phase 2.  The evaluation criteria are listed below.  Advancing teams will win award money to support their prototyping efforts.  The specific amount of award money won will be determined by the budget listed within each winning project plan, as well as other factors.  The maximum amount awarded to any one team will be $225,000.

If NASA determines that none of the submitted payload project plans are highly credible, providing high confidence levels that working prototypes can be successfully delivered by the end of the Phase 2, then the challenge will conclude at the end of Phase 1.  In that case, the top three ranked teams will each receive a $20,000 prize.

Phase 2

Upon being selected as a Phase 1 winner, each winning team will be assigned a NASA project manager.  A portion of the award money will be distributed at once, to help development efforts get underway.  The remainder of the award money will be distributed upon achievement of two significant milestones, with half of the remaining award money being paid for each milestone achieved.  The team and the NASA project manager will determine a set of mutually agreed-upon milestones against which remaining prize payments will be made.  It is expected that each team will be in regular contact with its project manager throughout the prototyping period.  In addition to development funds, teams will also have up to 40 hours of access to subject matter experts (SMEs).  These experts will be drawn from NASA and will vary, depending on the specific expertise required by a team.

NASA is committed to helping Phase 2 teams be as successful as possible.  To this end, they are offering valuable support mechanisms that are in addition to 40 hrs SME support.  NASA is willing to assist with an initial design review, including a review of the design drawing and the material and equipment list, before teams start payload fabrication.  This can be set up through a team’s project manager.  Although documentation packages can be submitted for high level feedback (see below), teams should be proactively working with their project managers to identify and address documentation issues on an ongoing basis.

NASA must receive at least 3 identical, working prototypes by February 18, 2022, accompanied by a full documentation package, an annotated sample data set, and any additional information by January 28, 2022.  If a team is able to provide additional prototypes, this is encouraged.  The documentation package covers the following topics (see Resources tab for descriptions of each topic):

  • Interface Verification
  • As-built Bill of Materials and Material certifications
  • Material Item Usage List
  • Structural Verification Plan
  • Payload User Manual
  • Special Handling Constraints document
  • Design Package (hardware and software)
  • End Circuit Data Sheet
  • Testing, Verification, and Validation documentation
  • Anomalies List

NASA will review the documentation packages from any team that have been submitted by November 15, 2021.  High-level feedback will be provided to each team.  Good supporting documentation for prototypes is critical.  NASA expects to receive near-final versions of documentation packages.  There will be an opportunity to revise your documentation based on NASA’s feedback and any modifications made prior to final submission.  

NASA plans to test one to two prototypes to failure and to reserve the remaining one(s) for possible deployment. These prototypes should arrive at NASA ready to undergo several weeks of rigorous testing.  They should represent the final instrument design and should be ready for deployment.  It is expected that prototypes, including all sub-systems, will be at TRL of 5 or higher.  At the conclusion of the testing and evaluation period, NASA will select a winner and a runner up, based on prototype performance, scientific impact, and overall mission confidence.  The winning team will receive $100,000, and the runner-up team will receive $25,000. Due to time constraints, only a portion of environmental testing will occur prior to the award decisions.  Award decisions will be made primarily on prototype functional test results and analysis showing the design can survive the expected environments, which teams provide in the documentation package.  Additional testing that occurs after award decisions will help inform whether or not prototypes are assigned to future missions.  

  

Prize

This challenge has a total prize purse of $800,000.  

The Phase 1 prize purse of $675,000 will be shared among up to 4 Phase 1 winning teams.  NASA will determine the specific amounts won by each advancing team based on the proposed project budgets from each winning submission and other factors.   The maximum amount awarded to any one team will be $225,000.  The payment of winnings will be tied to progress against each team’s project plan.

At the end of Phase 2, after testing and evaluation of the received prototypes, NASA will award the winning team $100,000 and a runner-up team $25,000.

In addition to the prizes discussed above, winners will also receive the following non-monetary incentives: 

  • An opportunity to talk or collaborate with NASA engineers about prototype integration
  • An opportunity for winning technologies to be flight and/or mission-tested
  • If payload is integrated and deployed, photo-documentation of the payload on the...
  • A virtual event that allows all prize winners to present their ideas and interact with NASA JPL  technical staff
  • Participation in a ‘Winners Webinar’

Timeline

Phase 1 Challenge launch - October 15, 2020

Phase 1 Preliminary project plans due - November 10, 2020

Phase 1 Project plans due - January 4, 2021 

Phase 1 Submission evaluation period - January 4-25, 2021

Phase 1 Winners announced - January 28, 2021

Phase 2 Development period - Jan 28, 2021 - Jan 3, 2022

(team-specific milestones met throughout this period)

Phase 2 Initial documentation pkg due - October 29, 2021

Phase 2 Final documentation pkg and additional info must be shared - January 28, 2022 

Phase 2 Payloads must arrive at JPL - February 18, 2022 

Phase 2 Evaluation period - January 28 - March 27, 2022

Phase 2 Winners announced - April 28, 2022

 

Judging Criteria

Phase 1 Judging Criteria

Section DescriptionOverall Weight
Project plan, timeline, risk and risk mitigation 

Quality of project plan, including clear, concise writing and thoughtful and complete responses.  Is a realistic timeline provided?  Are milestones tied to significant achievements and meaningful progress?  Is the development plan credible? Are all necessary resources considered and planned for?
Were any NASA feedback provided understood, addressed, and incorporated?  Are all required elements/components present?  Have import/export issues been addressed, if necessary?

Have all primary risks been identified?  Have risk mitigation strategies been provided?

25
TeamLikelihood that the proposing team has the expertise, experience, resources, and commitment to successfully deliver at least 3 working prototypes to NASA on time.15
CostIs the budget complete?  Are the costs provided realistic and complete?  Are the proposed milestones reflective of major accomplishments and progress?  Are they appropriately tied to award payments?20
Payload impact and capabilityThe impact of proposed payload if it is successfully prototyped and deployed.  Are the stated capabilities realistic?  Is successful payload performance in a lunar environment likely?  Is the information gathered important and aligned with the objectives of the Artemis program?25
Likelihood of operational successIs the feasibility of the proposed payload to operate in a lunar environment demonstrated?  Do submitters provide a reasonable justification/analysis that provides confidence their payload can operate under the expected lunar environments?  Is a credible operations scenario provided?15

 

Phase 2 Judging Criteria

Section DescriptionOverall Weight
Operational TestingBenchtop demonstration - does it work?25
Functional Performance TestingDoes it make the claimed measurements?  Are the measurement accuracy, precision, detection limit, and other performance criteria met?20
Likelihood of surviving environmental testingWill it perform in the lunar environment?20
Scientific and Technical ImpactThe impact of proposed payload if it is successfully deployed.25
Quality of supporting documentation packageThe documentation package is comprehensive and complete.10

Submission Forms

Preliminary submission form

  1. Project Overview (3000 character limit)
    1. Please address what the payload is, what capability it offers, why the capability is important, and how long it will take to develop and deliver at least 3 prototypes.
    2. Also, provide a top level budget that includes a rough order of magnitude estimate.
    3. Then provide a clear and concise overview of the project plan that you will use to deliver at least 3 prototypes to NASA by February 18, 2022.
  2. Payload project plan timeline, milestones, and deliverables (6000 character limit)
    1. You will have 49 weeks to build and deliver at least 3 identical, working prototypes to NASA by February 18, 2022.  Please provide a detailed and complete timeline to support this objective.  Remember, NASA considers a comprehensive and realistic timeline to be a key indicator of success.
    2. Your timeline should show the work flow, identify key milestones and deliverables, and should identify 2 significant milestones against which you propose progress award payments should be made.
  3. Quad Chart (file upload)

Phase 1 submission form

  1. Team Information (6000 character limit)
    1. Please introduce yourself and your team.  The team captain should be identified and will be the primary point of contact for the team.
    2. Each team member should provide his/her full name and email address, along with several sentences that describe the expertise the team member brings and the role s/he will play in the prototyping phase.
    3. Please include a diagram showing the management structure.
  2. Project Overview (3000 character limit)
    1. Please address what the payload is, what capability it offers, why the capability is important, and how long it will take to develop and deliver at least 3 prototypes.
    2. Also, provide a top level budget that includes a rough order of magnitude estimate.
    3. Then provide a clear and concise overview of the project plan that you will use to deliver at least 3 prototypes to NASA by February 18, 2022.
  3. Prototype Capability (9000 character limit)
    1. Please fully describe your prototype payload’s capabilities.
    2. Why is this information important and how does it align with the goals of the Artemis program?
    3. What is the rationale for why this payload will operate in a lunar environment? What are the system performance specifications for your payload and why are they realistic?
    4. What precise measurement is being made and to what resolution?  What are the detection limits?
    5. What are potential error sources for measurements made?
    6. How is data processing handled?
    7. Please provide a state-of-the-art comparison for your prototype.  Why can’t it be used instead of your prototype, and what advantages does your prototype offer?  Does your prototype advance the state of the art?  If so, how?
  4. Payload project plan timeline, milestones, and deliverables (6000 character limit)
    1. You will have 49 weeks to build and deliver at least 3 identical, working prototypes to NASA by February 18, 2022.  Please provide a detailed and complete timeline to support this objective.  Remember, NASA considers a comprehensive and realistic timeline to be a key indicator of success.
    2. Your timeline should show the work flow, identify key milestones and deliverables, and should identify 2 significant milestones against which you propose progress award payments should be made.
    3. c. NASA recommends that you collaboratively validate your design with them.  Please share your plan to do this (for example, sharing a design drawing in advance of any fabrication work).
  5. Resources (3000 character limit)
    1. Please describe the resources needed to develop and deliver at least 3 prototypes.  Resources include things like facilities, equipment, testing capabilities, and raw materials or goods.
    2. For each resource mentioned, please explain whether you already have it, have a plan and the means to acquire it, or still need to develop a plan to address the gap.
  6. Risk and risk mitigation (3000 character limit)
    1. Please list and fully describe at least three primary risks associated with your payload.  These include risks in developing the prototypes, as well as operational risks when the payload is deployed.
    2. For each risk, please provide a risk mitigation strategy.
  7. Prototype demonstration and operations (9000 character limit)
    1. Demonstrate the feasibility of your proposed payload to operate in a lunar environment.
    2. NASA will perform the required testing on delivered prototypes, so submitters must provide a reasonable justification/analysis that provides confidence their payload can operate under the expected lunar environments (i.e. documentation showing flight heritage of components, modeling, simulation,  analyses, or other justifications).
    3. What is your high-level operations plan and how will your prototype operate when deployed?  Important things to consider include:
      1. Data collection time
      2. How much time do you need for “sampling” and at what resolution?
      3. Ideal lunar site (taking into consideration the likely landing site information given in the Users’ Guide)
      4. Mechanical Stability requirements
      5. Thermal requirements
      6. Mechanical requirements
      7. Environmental hazards
      8. What does the payload need to make a measurement? e.g. does it need to be held at a certain distance, does it need access to certain views for calibration, does it need to be shielded from the environment in a specific way?
  8. Budget (6000 character limit)
    1. Please provide a complete and realistic budget for delivering at least 3 prototypes to NASA by February 18, 2022.  Your budget should align with the timeline provided previously, and the proposed milestone payments should occur in a manner that supports your overall budget.
    2. Be sure to justify the basis of any estimates you provide.
  9. Supporting resources (zip file upload)
    1. Please upload a zip file that contains:
      1. Your completed Quad Chart
      2. Any references, charts, graphs, tables, or other supporting material

Phase 2 Submission

A complete submission to Phase 2 consists of:

  • Three or more identical, working prototypes
    • The specific address for prototype shipping will be shared with teams during a regular check-in with their NASA project manager.
    • Prototypes should be packaged carefully and securely to ensure safe delivery.
  • Full documentation package
  • An annotated sample data set
  • Any additional information or documents that may be helpful to NASA.

Rules

Participation Eligibility:

The Prize is open to anyone age 18 or older participating as an individual or as a team. Individual competitors and teams may originate from any country, as long as United States federal sanctions do not prohibit participation (see: https://www.treasury.gov/resource-center/sanctions/Programs/Pages/Programs.aspx). 

If you are a NASA employee, a Government contractor, or employed by a Government Contractor, your participation in this challenge may be restricted.

Submissions must originate from either the U.S. or a designated country (see definition of designated country at https://www.acquisition.gov/far/part-25#FAR_25_003), OR have been substantially transformed in the US or designated country prior to prototype delivery pursuant to FAR 25.403(c). 

Submissions must be made in English. All challenge-related communication will be in English.

You are required to ensure that all releases or transfers of technical data to non-US persons comply with International Traffic in Arms Regulation (ITAR), 22 C.F.R. §§ 120.1 to 130.17.

To be eligible to compete, you must comply with all the terms of the challenge as defined in the Challenge-Specific Agreement.

Intellectual Property

Innovators who are awarded a prize for their submission must agree to grant NASA a royalty free, non-exclusive, irrevocable, world-wide license in all Intellectual Property demonstrated by the winning/awarded submissions. See the Challenge-Specific Agreement for complete details.

Registration and Submissions:

Submissions must be made online (only), via upload to the HeroX.com website, on or before June 1, 2020, at 5:00 pm ET. No late submissions will be accepted.

Selection of Winners:

Based on the winning criteria, prizes will be awarded per the weighted Judging Criteria section above.

Judging Panel:

The determination of the winners will be made by HeroX based on the evaluation by relevant NASA specialists.

Additional Information

  • By participating in the challenge, each competitor agrees to submit only their original idea. Any indication of "copying" amongst competitors is grounds for disqualification.
  • All applications will go through a process of due diligence; any application found to be misrepresentative, plagiarized, or sharing an idea that is not their own will be automatically disqualified.
  • All ineligible applicants will be automatically removed from the competition with no recourse or reimbursement.
  • No purchase or payment of any kind is necessary to enter or win the competition.
  • Void wherever restricted or prohibited by law.
Timeline
Updates8

Challenge Updates

Check out this video from NASA Edge about the challenge!

July 14, 2022, 11:30 a.m. PDT by Shane Jenkins

NASA EDGE’s latest episode is now available, and this episode features the Honey, I Shrunk the Payload Challenge!

Guests include Mark Thornblom , Christian Haughwout, Phil Jobson, Tibor Pacher , and Joshua Ravich.  Plus, there are multiple scaled-down versions of the NASA EDGE team for good measure.
 

You can find the show in the following locations:

The show will also air on NASA TV at multiple times during the coming weeks.
 

We hope you enjoy the show!  Hopefully, we will see all of these instruments fly to the moon on future missions!


Unable to join yesterday's webinar? We have you covered!

May 26, 2022, 3 p.m. PDT by Despina Maliaka

Dear Innovators,

If you were unable to attend yesterday's Winners Webinar, you are now able to watch the recording using the link below.

 

Enjoy!


Register now for the Meet the Winners Webinar!

May 19, 2022, 1:30 p.m. PDT by Shane Jenkins

Attention space enthusiasts,

Next Wednesday May 25th at 2:00 pm ET we will be hosting our final webinar featuring the three ultimate winners of Honey, I Shrunk the NASA Payload, the Sequel. Join our conversation to hear from these stellar teams as they speak live about designing their payloads and making them ready for space travel. Plus, you may even get to ask them your most pressing questions about how they built something that may be sent to the moon!

To get a seat in this webinar and receive your link to join the event, please sign up at the link below right away.

Sign up Here

 


Announcing the Honey, I Shrunk the NASA Payload, The Sequel Ultimate Winners

May 4, 2022, 11 a.m. PDT by Shane Jenkins

NASA Tournament Lab has selected the following winners to share in the $140,000 final prize of the Honey, I Shrunk the NASA Payload, The Sequel challenge. The winners are:
 

First Place

  • SunSlicer, submitted by Team Sun Slicer - $100,000
  • SunSlicer is an innovative, miniature, low power, versatile, TRL7 flight ready XRAY spectrometer with custom packaging and thermal design to adapt it for a harsh, miniature rover-deployed lunar environment. A key feature of SunSlicer is the lunar dust mitigation concept that utilizes a rotary shutter/filter wheel and wiper system that is driven by an extremely compact custom motor implementation and geartrain. SunSlicer has many impactful mission possibilities for the Artemis program in both  identifying lunar resource potential and characterizing the lunar environment including prospecting for rock forming elements leveraging solar flares, measuring flare producing solar active regions to high angular accuracy and monitoring background XRAY radiation.
     

Second Place

  • Puli Lunar Water Snooper, submitted by Team Puli Space - $25,000
  • Hydrogen is one of the most valuable lunar resources, essential for future missions, permanent human presence and habitats on the Moon. Therefore it is crucial to find, characterize and map lunar hydrogen. The Puli Lunar Water Snooper is designed by Puli Space exactly for these tasks: it identifies hydrogen and therefore all hydrogen-bearing volatiles like water ice, it measures quantity and distribution of these resources in the lunar surface regolith, mapping even a large area when mounted on a rover. The payload performs its measurements by detecting cosmic ray and low-energy neutron particles coming from the lunar regolith, using 3 industrial CMOS image sensors - two of them bearing a special, neutron sensitive coating on top -, monitoring the lunar radiation environment at the same time. This design is a low-cost, simple and extremely lightweight solution, which are all key features for short-term robotic exploration missions to find and utilize resources on the Moon.
     

And in Third Place, the Challenge Sponsors wanted to highlight the excellent work of the final team for delivering a complete payload package. Thus an additional prize of $15,000 was gathered for their recognition.

  • μRAD - A Micro-Sized Radiation Assessment Detector , submitted by Team μRAD - $15,000
  • Radiation is one of the greatest threats to extended human habitation in space. Shielding from and mitigating the effects of this radiation for the Artemis program will require detailed surveys of the radiation environment at the lunar pole. Currently existing devices capable of making the required measurements are too large and too expensive for widespread deployment on Commercial Lunar Payload Services (CLPS) rovers and landers. Therefore, Team µRAD’s payload is a miniaturized radiation measuring instrument with many of the same features as the radiation assessment detector (RAD) on the Curiosity rover, but whose size, weight, and power (SWaP) are compatible with smaller exploration vehicles.

 

For the winners of this challenge, a representative from HeroX will be in touch to payout your final prize in the same manner as the past prizes.

Furthermore, representatives from NASA may continue to communicate with you about  updates for payload documentation or any other related questions.
 

Congratulations once again to our winners!


Watch the winners announcement live today!

May 4, 2022, 8:11 a.m. PDT by Shane Jenkins

Hello again, Heroes.

Today is the day we announce the final winner rankings for Honey, I Shrunk the NASA Payload, the Sequel. Exciting times!

If you would like to catch the naming of the winners as they are announced by Jim Reuter, NASA Associate Administrator, live today at the Lunar Surface Innovation Consortium Spring meeting around 11:30am ET, you can do so at the livestream link below. The announcement will also be posted to this page later today.

All the best to those who poured their hearts into this challenge. And in particular, we have three excellent finishers to celebrate! Let's keep our fingers crossed that they will have a chance for accommodation on an upcoming mission.

 

Livestream: 


Forum6
Teams488
Press
Resources
Meet the Winners
Meet the Participating Teams

Meet the Participating Teams

We are pleased to share the teams participating in the Honey, I Shrunk the NASA Payload Challenge, The Sequel.

 

You can learn about all of the teams participating below. There are six teams recruiting new members have indicated the expertise they are seeking below their project description. Those teams are as follows:

  • Puli Lunar Water Snooper
  • M.E.G.A.M.A.N.
  • Lunar Radiation Characterization
  • Moon soil resources from seismic waves
  • Adaptable Science Box for Lunar Rovers
  • LAMPER

 

LUNAR ENVIRONMENT

 

Sun Slicer - Miniaturized XRAY Spectrometer by Team Sun Slicer

Team Sun Slicer is a collection of agile veteran Scientists and Engineers that are passionate about developing flight ready hardware and then performing the enabled science. Phillip Jobson [BSEE UniSa, President Phil Jobson Consulting specializing in rapid hardware development] Competition Team Leader joins the proven Space Flight Hardware team of Dr Garrett Jernigan [PhD Physics MIT, Retired UC Berkeley Space Sciences Lab specializing in High Energy Astrophysics], Dr John Doty [PhD Physics MIT, President Noqsi Aerospace specializing in X and Gamma Ray Astronomy Missions and Space Hardware design] and Brian Silverman [BSCS MIT, Co-Founder Playful Invention Company specializing in all aspects of Software and Firmware development].

SunSlicer is an innovative flight ready XRAY Spectrometer and integrated camera adapted for the harsh lunar environment, compact form factor and low power requirements of miniature lunar rover payloads. Sunslicer will perform compelling Heliospheric science with an innovative experiment that can measure Sun Active regions with at least 20x finer angular resolution than similar direct XRAY imaging from satellites. Sun Slicer will also monitor the Lunar Radiation environment and serves as a prototype for a compact in situ XRAY Safety Monitor for Lunar Astronauts. An adapted Sun Slicer could be used for 2024 Artemis Astronaut needs as a portable instrument.

 

LEA (Lunar surface Energetic neutrals Analyzer) by Bhardwaj Shastri

I recently graduated with a Masters in Space Science & Technology, specialization in space instrumentation, from LTU, Kiruna, Sweden. Like a water droplet in the vast ocean, I always wanted to contribute my knowledge and skills for human’s space exploration, so that we can achieve more giant leaps in the future like the one we did on July 20, 1969. Reading, watching and following all developments of NASA’s Artemis program is always an exciting stuff for me to do. I am honored that my proposed design will somehow help NASA to bridge lunar strategic knowledge gaps, in order to make human presence permanent beyond Earth.

 

 

 

Lunar Radiation Characterization by Christian Haughwout

Radiation is one of the greatest threats to extended human habitation in space. Shielding from and mitigating the effects of this radiation for the Artemis program will require detailed surveys of the radiation environment at the lunar pole. Currently existing devices capable of making the required measurements are too large and too expensive for widespread deployment on Commercial Lunar Payload Services (CLPS) rovers and landers. Our team is working to create a miniaturized radiation measuring instrument with many of the same features as the radiation assessment detector (RAD) on the Curiosity rover, but which is size, weight, and power (SWaP) compatible with smaller exploration vehicles.

SEEKING: Our team currently consists of two dedicated individuals with extensive experience building low-cost space hardware for CubeSat missions. In order to ensure we can deliver the best payload possible in the time available, we are looking to augment our team. Specifically, we are looking for individuals with expertise in Geant4 modelling and ARM MCU firmware development in C++. Both of these roles can be done completely remotely from the rest of the team. No space-specific experience required. --> Contact Christian Haughwout to apply.

 

Laser Based Dust Detector for the Lunar Surface by Ryan Smith

Ryan is an electronic engineer with an eye for electronic systems design. Currently working for RAL Space, just finishing the Graduate scheme, he is working on graduate lead system studies for rovers, all the way through to major scientific mission development for lunar and Earth observation missions. Ryan is pioneering the development of the mind-set of small science instruments based around CubeSat technology, and small low cost rover systems to make human habitation and large science possible on the Moon and eventually Mars. The instrument Ryan has designed is to characterise and understand the situation with lunar dust on the Moon. Lunar dust will be one of the major factors affecting future lunar missions, and understanding how rovers and rockets interact with that dust is a key roadblock for large missions.

 

 

LUNAR RESOURCE POTENTIAL

 

Puli Lunar Water Snooper by Puli Space Technologies

Puli Space Technologies is a Budapest (Hungary) based space technology company, with an experienced team of engineers and scientists passionate about the Moon. The team develops a lightweight lunar rover and payload instruments for the harsh lunar environment to explore resources, based on the team's Google Lunar XPRIZE experience.

Hydrogen is one of the most valuable lunar resources, essential for future missions, permanent human presence and habitats on the Moon. Therefore it is crucial to find, characterize and map lunar hydrogen. The Puli Lunar Water Snooper is designed by Puli Space exactly for these tasks: it identifies hydrogen and therefore all hydrogen-bearing volatiles like water ice, it measures quantity and distribution of these resources in the lunar surface regolith, mapping even a large area when mounted on a rover. The payload performs its measurements by detecting cosmic ray and low-energy neutron particles coming from the regolith, using 3 CMOS image sensors with a special, neutron sensitive coating on top, monitoring the lunar radiation environment at the same time. This design is a low-cost, simple and extremely lightweight solution, which are all key features for short-term robotic exploration missions to find and utilize resources on the Moon.

SEEKING:  Electronics/Electrical Engineer (with experience in FPGA, MCU and PCB design).  --> Contact Tibor Pacher to apply.

 

 

KSat Stuttgart e.V. MICU 3D mineral seeker by KSat Stuttgart e.V. MICU 3D mineral seeker Team 

The Mineral Investigation Camera using Ultra-violet (MICU) sensor from KSat Stuttgart (Germany) is a 3D optical fluorescence mineral seeker operating in multiple ultra-violet (UV) wavelengths with a stereovision camera setup. It detects the instantaneously emitted photons after UV illumination to discover minerals. Afterwards MICU observes the fluorescent object with its cameras. Due to the instantons response of fluorescence, the MICU seeker can operate at high frame rates and allows to cover larger surfaces in short time. The onboard image processor analyzes the images, detects minerals and then provides compressed reports for downstream to earth for advanced mineral classification. Additional position information from the rover is attached to the reports for large-scale localization.

About us: KSat Stuttgart e.V. is a non-profit student society with a history of successfully developed space missions which includes sounding rocket and balloon experiments and our own small satellite. For more information, please visit: https://www.ksat-stuttgart.de/en/.

 

M-ELVIS, Locating and Mapping Lunar Volatiles by Curtis Purrington 

Micro Expedient Lunar Volatile Identification Surveyor (m-ELVIS), is the little brother of ELVIS. The core components of both sensors are the same. Using a modified penetrometer, force curves are generated while pushing a probe beneath the lunar regolith. Force curves correlate to the ice structure of volatiles and to the mass percentage of volatiles present. Both parameters are important to future resource utilization plans. Below the surface, micro applications of heat provide further evidence of ice structure and to the mass percentage of volatiles in a given area and depth. Once, a pocket of volatiles has been discovered, larger applications of heat (< 4W) incrementally heat a small volume below the surface. Then, sublimated vapor flows through a mass flow sensor. Different volatiles sublimate at different temperatures, thus volatiles are identified. Finally, combining this data with navigational inputs highly detailed volatile maps are generated for future ISRU missions.

 

Permittivity Analysis of Regolith using SansEC  by Nova Rover Payload Team 

The Permittivity Analysis of Regolith using SansEC (PARSEC) payload was proposed by the Monash Nova Rover Team, a multidisciplinary undergraduate robotics group from Monash University in Melbourne, Australia. The team’s main focus is designing and building Mars rover analogues for the annual University Rover Challenge, held at the Mars Desert Research Station in Utah, USA.

PARSEC is a novel approach to map the distribution of Iron and Titanium Oxides contained within regolith and rock at the Lunar surface. Utilizing a series of conductive SansEC coils to measure and record changes in dielectric permittivity, PARSEC reveals information on the physical and compositional characteristics of Lunar regolith. PARSEC has been developed to support the goal of a sustainable, permanent human presence on the Moon by providing information on the distribution and quantity of prospective Lunar resources, in preparation for future In-Situ Resource Utilization (ISRU) missions.

 

LAMPER by Amin Aminaei

A LunAr Microwave PEnetrating Radar (LAMPER) is proposed as a scientific instrument onboard micro-rovers. LAMPER is specifically designed to study the lunar resource potential including regolith and polar resources. LAMPER is an active radar  with two separate transmitter and receiver antennas.  By sending short pulses and receiving the echoes from the regolith, LAMPER generates a microwave image of the regolith along the rover’s path. The transmitted pulse propagates through the lunar regolith layers and is partially scattered and reflected back. By processing the received signal one could get significant information about the thickness, structure and compositions of the lunar regolith as well as its electrical and magnetic properties. The previous lunar penetrating radars such as Apollo 17 and recent Chang'e-3 studied the lunar regolith and crust in depth in MHz bands. LAMPER would use a GHz ultra-wideband spectrum to study the surface regolith in more details and at higher resolution.

SEEKING: Microcontroller/ FPGA Engineer - RF PCB Designer. Contact Amin Aminaei to apply.

 

M.E.G.A.M.A.N.  by Big Brain, Little Payload Team 

Designed by members and friends of the American Society of Mechanical Engineers Design Team at the University of Texas at Austin, the Moon Element Gas Absorption to Mark Abundant Nodes (M.E.G.A.M.A.N.) is a payload designed to test atmospheric and regolith compositions. By ablating regolith with a laser, MEGAMAN is able to collect a gas sample and use optical spectroscopy to find elements/compounds that are life-sustaining such as helium, iron, sulfur, nitrogen, and water. The location data and detected samples will be paired to compose a map where eventual moon missions can mine these essential samples to sustain human life. With the large temperature range and durability that MEGAMAN offers, similar payloads could also be used on Mars and other exploratory sites. Ultimately, in situ resource utilization tools such as MEGAMAN on the Artemis program will only be one of many programs that will help establish a human presence on the moon.

SEEKING: We are currently looking for experts in electronics and data transmission. People with software development skills who understand statistics and can apply statistics in code (understanding in coding standards, unit tests, etc.) is encouraged to apply. The role also somewhat overlaps in data communications protocol, command execution vs. physical hardware design, and power design --> Contact Rebecca Lin to apply

 

Adaptable Science Box for Lunar Rovers by Space Initiatives Inc

Space Initiatives Inc (SII) has developed a multi-purpose experiment package and proposes to adapt it for use in characterizing the radiation and magnetic environment of the terrain at  a lunar rover. A region such as the Reiner Gamma lunar swirl region (an early NASA CLPS landing target) could have high and varying magnetic fields which should be measured on the surface. In addition, Reiner Gamma is in one of the regions of the Moon with the highest concentration of KREEP (Potassium, Rare Earth Elements and Phosphorus). KREEP contains an excess of Potassium, Uranium and Thorium, and so can be detected and characterized on the surface using radiation monitors. In addition, dust produced from high density KREEP regions may not be acceptable for long-term human operations; ground-truth observations are needed to characterize this risk as well. These science goals, at Reiner Gamma or in any of the wide-spread Procellarum KREEP Terranes, will be addressed by the proposed use of the SII Adaptable Science Box. 

SEEKING: We are looking for people who can complement our existing team, including people familiar with the Lunar charged particle environment or with rapid spacecraft development or with moving to flight operations. We are working on a number of exciting lunar infrastructure and science projects and are looking for people who can help us make an impact in supporting the human exploration and eventual commercial development of the Moon.  --> Contact Marshall Eubanks to apply.

 

Moon soil resources from seismic waves  by Drive Me Through The Moon Team 

DASS (Distributed Autonomous Seismic Sensor) is a payload that includes a main module, four seismic sensors to be deployed on the Moon to create a mesh to seek local resources with seismic waves

Roberto Chinelli is an electronic engineer based in Italy and has more than 20 years in IT consulting firms. He currently leads the Data and Artificial Intelligence business unit for a multinational company. He is passionate about technology and likes to challenge himself to apply his technology knowledge to concrete complex real cases.

Angelo Costantino is an aerospace engineer based in Belgium and has more than 10 years experience in aerospace structural analysis as a consultant for aircrafts and space companies all over Europe. He is a technology enthusiast with a strong background in problem solving and computational optimization. He is always seeking new and better solutions for everyday life.

We are all full time employed so we work hard at the night time and in the weekend for glory and for the moon :-) 

SEEKING: Geophysicist or geologist, electronic engineer, system engineer. --> Contact Roberto Chinelli to apply.

 

Raman-based Mineral Classification Payload (RMCP)  by Top Raman NASA Payload Team

The Raman-based Mineral Classification Payload (RMCP) combines several technological advances in micro-electronics, photonics and machine learning to deliver outsized performance in an undersized package. Our payload is designed to detect and classify chemical compounds within the lunar regolith by shining a laser at the surface and measuring the Raman Shift for analysis. Utilizing deep learning, our payload identifies the constituent elements by way of a convolutional neural network (CNN). The CNN outputs the detected elements in each sample and allows for the calculation of concentrations of each element in the regolith. To survive the harsh environment of the lunar surface, our hardware consists of a field-programmable gate array and a novel thermal regulation design. Our team is confident that RMCP can provide reliable detection capabilities to further NASA's situational awareness of lunar resources

Webinar Series